Drosophila epidermal cells are intrinsically mechanosensitive and modulate nociceptive behavioral outputs

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This is an important work and provides a significant advance in our understanding of mechanosensation in the epidermis. The evidence presented is solid, however, additional work such as testing whether the activation time can be shorter, addressing the mechanism underlying endoplasmic reticulum calcium release, and improving the clarity of writing and rigor of analysis would strengthen the study. This work will be of broad interest to neurobiologists, epithelial cell biologists, and mechanobiologists.

This article has been Reviewed by the following groups

Read the full article

Abstract

Somatosensory neurons (SSNs) that detect and transduce mechanical, thermal, and chemical stimuli densely innervate an animal’s skin. However, although epidermal cells provide the first point of contact for sensory stimuli. our understanding of roles that epidermal cells play in SSN function, particularly nociception, remains limited. Here, we show that stimulating Drosophila epidermal cells elicits activation of SSNs including nociceptors and triggers a variety of behavior outputs, including avoidance and escape. Further, we find that epidermal cells are intrinsically mechanosensitive and that epidermal mechanically evoked calcium responses require the store-operated calcium channel Orai. Epidermal cell stimulation augments larval responses to acute nociceptive stimuli and promotes prolonged hypersensitivity to subsequent mechanical stimuli. Hence, epidermal cells are key determinants of nociceptive sensitivity and sensitization, acting as primary sensors of noxious stimuli that tune nociceptor output and drive protective behaviors.

Article activity feed

  1. eLife assessment

    This is an important work and provides a significant advance in our understanding of mechanosensation in the epidermis. The evidence presented is solid, however, additional work such as testing whether the activation time can be shorter, addressing the mechanism underlying endoplasmic reticulum calcium release, and improving the clarity of writing and rigor of analysis would strengthen the study. This work will be of broad interest to neurobiologists, epithelial cell biologists, and mechanobiologists.

  2. Reviewer #1 (Public Review):

    Summary:

    In this meticulously conducted study, the authors show that Drosophila epidermal cells can modulate escape responses to noxious mechanical stimuli. First, they show that activation of epidermal cells evokes many types of behaviors including escape responses. Subsequently, they demonstrate that most somatosensory neurons are activated by activation of epidermal cells, and that this activation has a prolonged effect on escape behavior. In vivo analyses indicate that epidermal cells are mechanosensitive and require stored-operated calcium channel Orai. Altogether, the authors conclude that epidermal cells are essential for nociceptive sensitivity and sensitization, serving as primary sensory noxious stimuli.

    Strengths:

    The manuscript is clearly written. The experiments are logical and complementary. They support the authors' main claim that epidermal cells are mechanosensitive and that epidermal mechanically evoked calcium responses require the stored-operated calcium channel Orai. Epidermal cells activate nociceptive sensory neurons as well as other somatosensory neurons in Drosophila larvae, and thereby prolong escape rolling evoked by mechanical noxious stimulation.

    Weaknesses:

    Core details are missing in the protocols, including the level of LED intensity used, which are necessary for other researchers to reproduce the experiments. For most experiments, the epidermal cells are activated for 60 s, which is long when considering that nocifensive rolling occurs on a timescale of milliseconds. It would be informative to know the shortest duration of epidermal cell activation that is sufficient for observing the behavioral phenotype (prolongation of escape behavior) and activation of sensory neurons.

  3. Reviewer #2 (Public Review):

    Summary:

    The authors provide compelling evidence that stimulation of epidermal cells in Drosophila larvae results in the stimulation of sensory neurons that evoke a variety of behavioral responses. Further, the authors demonstrate that epidermal cells are inherently mechanoresponsive and implicate a role for store-operated calcium entry (mediated by Stim and Orai) in the communication to sensory neurons.

    Strengths:

    The study represents a significant advance in our understanding of mechanosensation. Multiple strengths are noted. First, the genetic analyses presented in the paper are thorough with appropriate consideration to potential confounds. Second, behavioral studies are complemented by sophisticated optogenetics and imaging studies. Third, identification of roles for store-operated calcium entry is intriguing. Lastly, conservation of these pathways in vertebrates raise the possibility that the described axis is also functional in vertebrates.

    Weaknesses:

    The study has a few conceptual weaknesses that are arguably minor. The involvement of store-operated calcium entry implicates ER calcium store release. Whether mechanical stimulation evokes ER calcium release in epidermal cells and how this might come about (e.g., which ER calcium channels, roles for calcium-induced calcium release etc.) remains unaddressed. On a related note, the kinetics of store-operated calcium entry is very distinct from that required for SV release. The link between SOC and epidermal cells-neuron transmission is not reconciled. Finally, it is not clear how optogenetic stimulation of epidermal cells results in the activation of SOC.

  4. These results, along with the observation that rolling behaviors predominate the early behavioral responses to epidermal stimulation (Fig. 2B), suggest that the nervous system prioritizes nocifensive behavioral outputs following epidermal stimulation

    While epidermal stimulation can broadly mediate SSN activity, how do you envision epidermal stimulation prioritizing nocifensive behavior? Does ensheathment of C4da and C3da neurons by epidermal cells explain the preferential response?

  5. C4da neurons, elicited nocifensive c-bending and/or rolling behaviors in 73% of larvae

    This is an elegant and thorough study mechanistically describing the role of epidermal cells in regulating nociceptive behavior as well as SSN activity more broadly, in Drosophila. Congratulations on your beautiful work! I’m curious why direct optogenetic activation of epidermal cells leads to a similar fraction of larva bending relative to direct activation of nociceptors, versus less than half of larva rolling in response to direct activation of epidermal cells relative to direct activation of nociceptors?