Extramacrochaetae regulates Notch signaling in the Drosophila eye through non-apoptotic caspase activity

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This important work presents data showing that all non-proneural phenotypes of the Inhibitor of DNA binding (Id) protein emc are mediated through inappropriate non-apoptotic caspase activity. Using the developing Drosophila retina as a model the authors convincingly show that emc acts by transcriptionally regulating the Death-Associated Inhibitor of Apoptosis 1 (diap1) gene, which impacts on Notch signaling by caspase-dependent increase of Delta protein. These findings are interesting for the caspase/apoptosis field as they add more non-apoptotic functions of caspases to the list, as well as for the Id field, which examines how Id proteins inhibit cell differentiation.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA binding (Id) proteins that interfere with certain master regulatory transcription factors. We report that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis ( diap1 ) gene. Multiple effects of emc mutations, on cell growth and on eye development, were all caused by reduced Diap1 levels and corresponding activation of caspases. These effects included growth of unspecified imaginal disc cells, acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant eye clones, morphogenetic furrow speed was increased by elevated Notch signaling, while decreased Notch signaling inhibited R7 specification and cone cell differentiation. This was all due to caspase-dependent increase in levels of Delta protein, a transmembrane ligand that both trans- activates and cis-inhibits Notch. Thus, emc mutations reveal the importance of restraining caspase activity, even in non-apoptotic cells, to prevent abnormal development.

Article activity feed

  1. eLife assessment

    This important work presents data showing that all non-proneural phenotypes of the Inhibitor of DNA binding (Id) protein emc are mediated through inappropriate non-apoptotic caspase activity. Using the developing Drosophila retina as a model the authors convincingly show that emc acts by transcriptionally regulating the Death-Associated Inhibitor of Apoptosis 1 (diap1) gene, which impacts on Notch signaling by caspase-dependent increase of Delta protein. These findings are interesting for the caspase/apoptosis field as they add more non-apoptotic functions of caspases to the list, as well as for the Id field, which examines how Id proteins inhibit cell differentiation.

  2. Reviewer #1 (Public Review):

    Summary:
    The extra macrochaetae (emc) gene encodes the only Inhibitor of DNA binding protein (Id protein) in Drosophila. Its best-known function is to inhibit proneural genes during development. However, the emc mutants also display non-proneural phenotypes. In this manuscript, the authors examined four non-proneural phenotypes of the emc mutants and reported that they are all caused by inappropriate non-apoptotic caspase activity. These non-neuronal phenotypes are: reduced growth of imaginal discs, increased speed of the morphogenetic furrow, and failure to specify R7 photoreceptor neurons and cone cells during eye development. Double mutants between emc and either H99 (which deletes the three pro-apoptotic genes reaper, grim, and hid) or the initiator caspase dronc suppress these mutant phenotypes of emc suggesting that the cell death pathway and caspase activity are mediating these emc phenotypes. In previous work, the authors have shown that emc mutations elevate the expression of ex which activates the SHW pathway (aka the Hippo pathway). One known function of the SHW pathway is to inhibit Yorkie which controls the transcription of the inhibitor of apoptosis, Diap1. Consistently, in emc clones the levels of Diap1 protein are reduced which might explain why caspase activity is increased in emc clones giving rise to the four non-neural phenotypes of emc mutants. However, this increased caspase activity is not causing ectopic apoptosis, hence the authors propose that this is non-apoptotic caspase activity. In the last part of the manuscript, the authors ruled out that Wg, Dpp, and Hh signaling are the target of caspases, but instead identified Notch signaling as the target of caspases, specifically the Notch ligand Delta. Protein levels of Delta are increased in emc clones in an H99- and dronc-dependent manner. The authors conclude that caspase-dependent non-apoptotic signaling underlies multiple roles of emc that are independent of proneural bHLH proteins.

    Strengths:
    Overall, this is an interesting manuscript and the findings are intriguing. It adds to the growing number of non-apoptotic functions of apoptotic proteins and caspases in particular. The manuscript is well written and the data are usually convincingly presented.

    Weaknesses:
    1. One major concern I have is the observation by the authors in Figure 3C in which protein levels of Diap1 are still reduced in emc H99 double mutant clones. If Diap1 is still reduced in these clones, shouldn't caspases still be de-repressed? Given that emc H99 double mutants rescue all emc phenotypes examined, the observation that Diap1 levels are still reduced in emc H99 clones is inconsistent with the authors' model. The authors need to address this inconsistency.

    2. Are Diap1 protein levels reduced in all emc clones, including clones anterior to the furrow? This is difficult to see in Figure 3B. it is also recommended to look in emc mosaic wing discs.

    3. The authors speculate that Delta may be a direct target of caspase cleavage (Figure 9B), but then rule it out for a good reason. However, I assume that the increased protein levels of Delta in emc clones (Figure 7) are the results of increased transcription. In that case, shouldn't caspases control the transcriptional machinery leading to Delta expression?

    4. How does caspase activity in emc clones cause reduced growth? Is this also mediated through Delta signaling?

    5. Figure 1M: Is there a similar result with emc dronc mosaics?

  3. Reviewer #2 (Public Review):

    Id proteins are thought to function by binding and antagonizing basic helix-loop-helix (bHLH) transcription factors but new findings demonstrate roles for emc including in tissues where no proneural (Drosophila bHLH) genes are known to function. The authors propose a new mechanism for developmental regulation that entails restraining new/novel non-apoptotic functions of apoptotic caspases.

    Specifically, the data suggest that loss of emc leads to reduced expression of diap1 and increased apoptotic caspase activity, which does not induce apoptosis but elevates Delta expression to increase N activity and cause developmental defects. Indeed, many of the phenotypes of emc mutant clones can be rescued by a chromosomal deficiency that reduces caspase activation or by mutations in the initiator caspase Dronc. A related manuscript that shows that loss of emc results in increased da, linked previously to diap1 expression, provides supporting data. There is increasing appreciation that apoptotic caspases have non-apoptotic roles. This study adds to the emerging field and should be of interest to readers.

    The data, for the most part, support the conclusions but I do have concerns about some of the data and the interpretations that should be addressed.

  4. Reviewer #3 (Public Review):

    The work extends earlier studies on the Drosophila Id protein EMC to uncover a potential pathway that explains several tissue-scale developmental abnormalities in emc mutants. It also describes a non-apoptotic role for caspases in cell biology.

    Strengths:
    The work adds to an emerging new set of functions for caspases beyond their canonical roles as cell death mediators. This novelty is a major strength as well as its reliance on genetic-based in vivo study. The study will be of interest to those who are curious about caspases in general.

    Weaknesses:
    The manuscript relies on imaging experiments using genetic mosaic imaginal discs. It is for the most part a qualitative analysis, showing representative samples with a small number of mutant clones in each. Although the senior author has a long track record of using experiments like this to rigorously discover regulatory mechanisms in this system, it is straightforward in 2023 to use Fiji and other image analysis tools to measure fluorescence. Such measurements could be done for all replicate clones of a given genotype as well as genetic control sampling. These could be presented in plots that would not only provide quantitative and statistical measurements, but will be more reader-friendly to those who are not fly people.

    Likewise, more details are needed to describe how clone areas were measured in Figure 1. Did they measure each clone and its twin spot, and then calculate the area ratio for each clone and its paired twin spot? This would be the correct way to analyze the data, yielding many independent measurements of the ratio. And doing so would obviate the need to log transform the data which is inexplicable unless they were averaging clones and twins within a disc and making replicates. More explanation is needed and if they indeed averaged, then they need to calculate the ratios pairwise for each clone and twin.