Active regulation of the epidermal growth factor receptor by the membrane bilayer
Curation statements for this article:-
Curated by eLife
eLife Assessment
The authors describe an interesting approach to studying the dynamics and function of membrane proteins in different lipid environments. The important findings have theoretical and practical implications beyond the study of EGFR to all membrane signalling proteins. The evidence supporting the conclusions is convincing, based on the use of a nanodisk system to study membrane proteins in vitro, combined with state-of-the-art single-molecule FRET. The work will be of broad interest to cell biologists and biochemists.
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (eLife)
- Reading List (BiophysicsColab)
Abstract
Cell surface receptors transmit information across the plasma membrane to connect the extracellular environment to intracellular function. While the structures and interactions of the receptors have been long established as mediators of signaling, increasing evidence suggests that the membrane itself plays an active role in both suppressing and enhancing signaling. Identifying and investigating this contribution have been challenging owing to the complex composition of the plasma membrane. We used cell-free expression to incorporate the epidermal growth factor receptor (EGFR) into nanodiscs with defined membrane compositions and characterized ligand-induced transmembrane conformational response and interactions with signaling partners using single-molecule and ensemble fluorescence assays. We observed that both the transmembrane conformational response and interactions with signaling partners are strongly lipid dependent, consistent with previous observations of electrostatic interactions between the anionic lipids and conserved basic residues near the membrane adjacent domain. Strikingly, the active conformation of EGFR and high levels of ATP binding were maintained regardless of ligand binding with high anionic lipid content typical of cancer cells, where EGFR signaling is enhanced. In contrast, the conformational response was suppressed in the presence of cholesterol, providing a mechanism for its known inhibitory effect on EGFR signaling. Our findings introduce a model of EGFR signaling in which the lipid environment can override ligand control, providing a biophysical basis for both robust EGFR activity in healthy cells and aberrant activity under pathological conditions. The membrane-adjacent protein sequence, likely responsible for the lipid dependence, is conserved among receptor tyrosine kinases, suggesting that active regulation by the plasma membrane may be a general feature of this important class of proteins.
Article activity feed
-
-
-
eLife Assessment
The authors describe an interesting approach to studying the dynamics and function of membrane proteins in different lipid environments. The important findings have theoretical and practical implications beyond the study of EGFR to all membrane signalling proteins. The evidence supporting the conclusions is convincing, based on the use of a nanodisk system to study membrane proteins in vitro, combined with state-of-the-art single-molecule FRET. The work will be of broad interest to cell biologists and biochemists.
-
Reviewer #1 (Public review):
Summary:
This work addresses a key question in cell signalling: how does the membrane composition affect the behaviour of a membrane signalling protein? Understanding this is important, not just to understand basic biological function but because membrane composition is highly altered in diseases such as cancer and neurodegenerative disease. Although parts of this question have been addressed on fragments of the target membrane protein, EGFR, used here, Srinivasan et al. harness a unique tool, membrane nanodisks, which allow them to probe full-length EGFR in vitro in great detail with cutting-edge fluorescent tools. They find interesting impacts on EGFR conformation in differently charged and fluid membranes, explaining previously identified signalling phenotypes.
Strengths:
The nanodisk system enables …
Reviewer #1 (Public review):
Summary:
This work addresses a key question in cell signalling: how does the membrane composition affect the behaviour of a membrane signalling protein? Understanding this is important, not just to understand basic biological function but because membrane composition is highly altered in diseases such as cancer and neurodegenerative disease. Although parts of this question have been addressed on fragments of the target membrane protein, EGFR, used here, Srinivasan et al. harness a unique tool, membrane nanodisks, which allow them to probe full-length EGFR in vitro in great detail with cutting-edge fluorescent tools. They find interesting impacts on EGFR conformation in differently charged and fluid membranes, explaining previously identified signalling phenotypes.
Strengths:
The nanodisk system enables full-length EGFR to be studied in vitro and in a membrane with varying lipid and cholesterol concentrations. The authors combine this with single-molecule FRET utilising multiple pairs of fluorophores at different places on the protein to probe different conformational changes in response to EGF binding under different anionic lipid and cholesterol concentrations. They further support their findings using molecular dynamics simulations, which help uncover the full atomistic detail of the conformations they observe.
Weaknesses:
Much of the interpretation of the results comes down to a bimodal model of an 'open' and 'closed' state between the intracellular tail of the protein and the membrane. Some of the data looks like a bimodal model is appropriate, but its use is not sufficiently justified (statistically or otherwise) in this work in its current form. The experiments with varying cholesterol in particular appear to suggest an alternate model with longer fluorescent lifetimes. More justification of these interpretations of the central experiment of this work would strengthen the paper.
-
Reviewer #2 (Public review):
Summary:
Nanodiscs and synthesized EGFR are co-assembled directly in cell-free reactions. Nanodiscs containing membranes with different lipid compositions are obtained by providing liposomes with corresponding lipid mixtures in the reaction. The authors focus on the effects of lipid charge and fluidity on EGFR activity.
Strengths:
The authors implement a variety of complementary techniques to analyze data and to verify results. They further provide a new pipeline to study lipid effects on membrane protein function.
Weaknesses:
Due to the relative novelty of the approach, a number of concerns remain.
(1) I am a little skeptical about the good correlation of the nanodisc compositions with the liposome compositions. I would rather have expected a kind of clustering of individual lipid types in the liposome …
Reviewer #2 (Public review):
Summary:
Nanodiscs and synthesized EGFR are co-assembled directly in cell-free reactions. Nanodiscs containing membranes with different lipid compositions are obtained by providing liposomes with corresponding lipid mixtures in the reaction. The authors focus on the effects of lipid charge and fluidity on EGFR activity.
Strengths:
The authors implement a variety of complementary techniques to analyze data and to verify results. They further provide a new pipeline to study lipid effects on membrane protein function.
Weaknesses:
Due to the relative novelty of the approach, a number of concerns remain.
(1) I am a little skeptical about the good correlation of the nanodisc compositions with the liposome compositions. I would rather have expected a kind of clustering of individual lipid types in the liposome membrane, in particular of cholesterol. This should then result in an uneven distribution upon nanodisc assembly, i.e., in a notable variation of lipid composition in the individual nanodiscs. Could this be ruled out by the implemented assays, or can just the overall lipid composition of the complete nanodisc fraction be analyzed?
(2) Both templates have been added simultaneously, with a 100-fold excess of the EGFR template. Was this the result of optimization? How is the kinetics of protein production? As EGFR is in far excess, a significant precipitation, at least in the early period of the reaction, due to limiting nanodiscs, should be expected. How is the oligomeric form of the inserted EGFR? Have multiple insertions into one nanodisc been observed?
(3) The IMAC purification does not discriminate between EGFR-filled and empty nanodiscs. Does the TEM study give any information about the composition of the particles (empty, EGFR monomers, or EGFR oligomers)? Normalizing the measured fluorescence, i.e., the total amount of solubilized receptor, with the total protein concentration of the samples could give some data on the stoichiometry of EGFR and nanodiscs.
(4) The authors generally assume a 100% functional folding of EGFR in all analyzed environments. While this could be the case, with some other membrane proteins, it was shown that only a fraction of the nanodisc solubilized particles are in functional conformation. Furthermore, the percentage of solubilized and folded membrane protein may change with the membrane composition of the supplied nanodiscs, while non-charged lipids mostly gave rather poor sample quality. The authors normalize the ATP binding to the total amount of detectable EGFR, and variations are interpreted as suppression of activity. Would the presence of unfolded EGFR fractions in some samples with no access to ATP binding be an alternative interpretation?
-