iGABASnFR2: Improved genetically encoded protein sensors of GABA

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This manuscript reports the development and characterization of iGABASnFR2, a genetically encoded GABA sensor that demonstrates substantially improved performance compared to its predecessor, iGABASnFR1. The work is comprehensive and methodologically rigorous, combining high-throughput mutagenesis, functional screening, structural analysis, biophysical characterization, and in vivo validation. The significance of the findings is fundamental, and the supporting evidence is compelling. iGABASnFR2 represents a notable advance in GABA sensor engineering, enabling enhanced imaging of GABA transmission both in brain slices and in vivo, and constitutes a timely, technically robust addition to the molecular toolkit for neuroscience research.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Abstract

Monitoring GABAergic inhibition in the nervous system has been enabled by development of an intensiometric molecular sensor that directly detects GABA. However, the first generation iGABASnFR exhibits low signal-to-noise and suboptimal kinetics, making in vivo experiments challenging. To improve sensor performance, we targeted several sites in the protein for near-saturation mutagenesis and evaluated the resulting sensor variants in a high throughput screening system using evoked synaptic release in primary cultured neurons. This identified a sensor variant, iGABASnFR2, with 4.2-fold improved sensitivity and 20% faster kinetics, and binding affinity that remained in a range sensitive to changes in GABA concentration at synapses. We also identified sensors with an inverted response, decreasing fluorescence intensity upon GABA binding. We termed the best such negative-going sensor iGABASnFR2n, which can be used to corroborate observations with the positive-going sensor. These improvements yielded a qualitative enhancement of in vivo performance when compared directly to the original sensor. iGABASnFR2 enabled the first measurements of direction-selective GABA release in the retina. In vivo imaging in somatosensory cortex revealed that iGABASnFR2 can report volume-transmitted GABA release following whisker stimulation. Overall, the improved sensitivity and kinetics of iGABASnFR2 make it a more effective tool for imaging GABAergic transmission in intact neural circuits.

Article activity feed

  1. eLife Assessment

    This manuscript reports the development and characterization of iGABASnFR2, a genetically encoded GABA sensor that demonstrates substantially improved performance compared to its predecessor, iGABASnFR1. The work is comprehensive and methodologically rigorous, combining high-throughput mutagenesis, functional screening, structural analysis, biophysical characterization, and in vivo validation. The significance of the findings is fundamental, and the supporting evidence is compelling. iGABASnFR2 represents a notable advance in GABA sensor engineering, enabling enhanced imaging of GABA transmission both in brain slices and in vivo, and constitutes a timely, technically robust addition to the molecular toolkit for neuroscience research.

  2. Reviewer #1 (Public review):

    Summary:

    This manuscript by Kolb and Hasseman et al. introduces a significantly improved GABA sensor, building on the pioneering work of the Janelia team. Given GABA's role as the main inhibitory neurotransmitter and the historical lack of effective optical tools for real-time in vivo GABA dynamics, this development is particularly impactful. The new sensor boasts an enhanced signal-to-noise ratio (SNR) and appropriate kinetics for detecting GABA dynamics in both in vitro and in vivo settings. The study is well-presented, with convincing and high-quality data, making this tool a valuable asset for future research into GABAergic signaling.

    Strengths:

    The core strength of this work lies in its significant advancement of GABA sensing technology. The authors have successfully developed a sensor with higher SNR and suitable kinetics, enabling the detection of GABA dynamics both in vitro and in vivo. This addresses a critical gap in neuroscience research, offering a much-needed optical tool for understanding the most important inhibitory neurotransmitter. The clear representation of the work and the convincing, high-quality data further bolster the manuscript's strengths, indicating the sensor's reliability and potential utility. We anticipate this tool will be invaluable for further investigation of GABAergic signaling.

    Weaknesses:

    Despite the notable progress, a key limitation is that the current generation of GABA sensors, including the one presented here, still exhibits inferior performance compared to state-of-the-art glutamate sensors. While this work is a substantial leap forward, it highlights that further improvements in GABA sensors would still be highly beneficial for the field to match the capabilities seen with glutamate sensors.

  3. Reviewer #2 (Public review):

    Summary:

    This manuscript presents the development and characterization of iGABASnFR2, a genetically encoded GABA sensor with markedly improved performance over its predecessor, iGABASnFR1. The study is comprehensive and methodologically rigorous, integrating high-throughput mutagenesis, functional screening, structural analysis, biophysical characterization, and in vivo validation. iGABASnFR2 represents a significant advancement in GABA sensor engineering and application in imaging GABA transmission in slice and in vivo. This is a timely and technically strong contribution to the molecular toolkit for neuroscience.

    Strengths:

    The authors apply a well-established sensor optimization pipeline and iterative engineering strategy from single-site to combinatorial mutants to engineer iGABASnFR2. The development of both positive and negative going variants (iGABASnFR2 and iGABASnFR2n) offers experimental flexibility. The structure and interpretation of the key mutations provide insights into the working mechanism of the sensor, which also suggest optimization strategies. Although individual improvements in intrinsic properties are incremental, their combined effect yields clear functional gains, enabling detection of direction-selective GABA release in the retina and volume-transmitted GABA signaling in somatosensory cortex, which were challenging or missed using iGABASnFR1.

    Weaknesses:

    With minor revisions and clarifications, especially regarding membrane trafficking, this manuscript will be a valuable resource for probing inhibitory transmission.