The actomyosin system is essential for the integrity of the endosomal system in bloodstream form Trypanosoma brucei

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This important study builds on a previous publication (with partially overlapping authors), demonstrating that T. brucei has a continuous endomembrane system, which probably facilitates high rates of endocytosis. Using a range of cutting-edge approaches, the authors present compelling evidence that an actomyosin system, with the myosin TbMyo1 as the molecular motor, is localized close to the endosomal system in the bloodstream form (BSF) of Trypanosoma brucei. It shows convincingly that actin is important for the organization and integrity of the endosomal system, and that the trypanosome Myo1is an active motor that interacts with actin and transiently associates with endosomes, but a role of Myo1 in endomembrane function in vivo was not directly demonstrated. This work should be of interest to cell biologists and microbiologists working on the cytoskeleton, and unicellular eukaryotes.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei , a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques together with biochemical and biophysical assays were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei .

Article activity feed

  1. eLife assessment

    This important study builds on a previous publication (with partially overlapping authors), demonstrating that T. brucei has a continuous endomembrane system, which probably facilitates high rates of endocytosis. Using a range of cutting-edge approaches, the authors present compelling evidence that an actomyosin system, with the myosin TbMyo1 as the molecular motor, is localized close to the endosomal system in the bloodstream form (BSF) of Trypanosoma brucei. It shows convincingly that actin is important for the organization and integrity of the endosomal system, and that the trypanosome Myo1is an active motor that interacts with actin and transiently associates with endosomes, but a role of Myo1 in endomembrane function in vivo was not directly demonstrated. This work should be of interest to cell biologists and microbiologists working on the cytoskeleton, and unicellular eukaryotes.

  2. Reviewer #1 (Public Review):

    Using a combination of cutting-edge high-resolution approaches (expansion microscopy, SIM, and CLEM) and biochemical approaches (in vitro translocation of actin filaments, cargo uptake assays, and drug treatment), the authors revisit previous results about TbMyo1 and TbACT in the bloodstream form (BSF) of Trypanosoma brucei. They show that a great part of the myosin motor is cytoplasmic but the fraction associated with organelles is in proximity to the endosomal system. In addition, they show that TbMyo1 can move actin filaments in vitro and visualize for the first time this actomyosin system using specific antibodies, a "classical" antibody for TbMyo1, and a chromobody for actin. Finally, using latrunculin A, which sequesters G-actin and prevents F-actin assembly, the authors show the delocalization and eventually the loss of the filamentous actin signal as well as the concomitant loss of the endosomal system integrity. However, they do not assess the localization of TbMyo1 in the same conditions.

    Overall the work is well conducted and convincing. The conclusions are not over-interpreted and are supported by the experimental results.

  3. Reviewer #2 (Public Review):

    Summary:

    The study by Link et al. advances our understanding of the actomyosin system in T. brucei, focusing on the role of TbMyo1, a class I myosin, within the parasite's endosomal system. Using a combination of biochemical fractionation, in vitro motility assays, and advanced imaging techniques such as correlative light and electron microscopy (CLEM), this paper demonstrates that TbMyo1 is dynamically distributed across early and late endosomes, the cytosol, is associated with the cytoskeleton, and a fraction has an unexpected association with glycosomes. Notably, the study shows that TbMyo1 can translocate actin filaments at velocities suggesting an active role in intracellular trafficking, potentially higher than those observed for similar myosins in other cell types. This work not only elucidates the spatial dynamics of TbMyo1 within T. brucei but also suggests its broader involvement in maintaining the complex architecture of the endosomal network, underscoring the critical role of the actomyosin system in a parasite that relies on high rates of endocytosis for immune evasion.

    Strengths:

    A key strength of the study is its exceptional rigor and successful integration of a wide array of sophisticated techniques, such as in vitro motility assays, and advanced imaging methods, including correlative light and electron microscopy (CLEM) and immuno-electron microscopy. This combination of approaches underscores the study's comprehensive approach to examining the ultrastructural organization of the trypanosome endomembrane system. The application of functional data using inhibitors, such as latrunculin A for actin depolymerization, further strengthens the study by providing insights into the dynamics and regulatory mechanisms of the endomembrane system. This demonstrates how the actomyosin system contributes to cellular morphology and trafficking processes. Furthermore, the discovery of TbMyo1 localization to glycosomes introduces a novel aspect to the potential roles of myosin I proteins within the cell, particularly in the context of organelles analogous to peroxisomes. This observation not only broadens our understanding of myosin I functionality but also opens up new avenues for research into the cellular biology of trypanosomatids, marking a significant contribution to the field.

    Weaknesses:

    Certain limitations inherent in the study's design and scope render the narrative incomplete and make it challenging to reach definitive conclusions. One significant limitation is the reliance on spatial association data, such as colocalization of TbMyo1 with various cellular components-or the absence thereof-to infer functional relationships. Although these data suggest potential interactions, the authors do not confirm functional or direct physical interactions.

    While TbMyo1's localization is informative, the authors do not directly demonstrate its biochemical or mechanical activities in vivo, leaving its precise role in cellular processes speculative. Direct assays that manipulate TbMyo1 levels, activity, and/or function, coupled with observations of the outcomes on cellular processes, would provide more definitive evidence of the protein's specific roles in T. brucei. A multifaceted approach, including genetic manipulations, uptake assays, kinetic trafficking experiments, and imaging, would offer a more robust framework for understanding TbMyo1's roles. This comprehensive approach would elucidate not just the "what" and "where" of TbMyo1's function but also the "how" and "why," thereby deepening our mechanistic insights into T. brucei's biology.

  4. Reviewer #3 (Public Review):

    Summary:

    In this work, Link and colleagues have investigated the localization and function of the actomyosin system in the parasite Trypanosoma brucei, which represents a highly divergent and streamlined version of this important cytoskeletal pathway. Using a variety of cutting-edge methods, the authors have shown that the T. brucei Myo1 homolog is a dynamic motor that can translocate actin, suggesting that it may not function as a more passive crosslinker. Using expansion microscopy, iEM, and CLEM, the authors show that MyoI localizes to the endosomal pathway, specifically the portion tasked with internalizing and targeting cargo for degradation, not the recycling endosomes. The glycosomes also appear to be associated with MyoI, which was previously not known. An actin chromobody was employed to determine the localization of filamentous actin in cells, which was correlated with the localization of Myo1. Interestingly, the pool of actomyosin was not always closely associated with the flagellar pocket region, suggesting that portions of the endolysomal system may remain at a distance from the sole site of parasite endocytosis. Lastly, the authors used actin-perturbing drugs to show that disrupting actin causes a collapse of the endosomal system in T. brucei, which they have shown recently does not comprise distinct compartments but instead a single continuous membrane system with subdomains containing distinct Rab markers.

    Strengths:

    Overall, the quality of the work is extremely high. It contains a wide variety of methods, including biochemistry, biophysics, and advanced microscopy that are all well-deployed to answer the central question. The data is also well-quantitated to provide additional rigor to the results. The main premise, that actomyosin is essential for the overall structure of the T. brucei endocytic system, is well supported and is of general interest, considering how uniquely configured this pathway is in this divergent eukaryote and how important it is to the elevated rates of endocytosis that are necessary for this parasite to inhabit its host.

    Weaknesses:

    (1) Did the authors observe any negative effects on parasite growth or phenotypes like BigEye upon expression of the actin chromobody?

    (2) The Garcia-Salcedo EMBO paper cited included the production of anti-actin polyclonal antibodies that appeared to work quite well. The localization pattern produced by the anti-actin polyclonals looks similar to the chromobody, with perhaps a slightly larger labeling profile that could be due to differences in imaging conditions. I feel that the anti-actin antibody labeling should be expressly mentioned in this manuscript, and perhaps could reflect differences in the F-actin vs total actin pool within cells.

    (3) The authors showed that disruption of F-actin with LatA leads to disruption of the endomembrane system, which suggests that the unique configuration of this compartment in T. brucei relies on actin dynamics. What happens under conditions where endocytosis and endocyctic traffic is blocked, such as 4 C? Are there changes to the localization of the actomyosin components?

    (4) Along these lines, the authors suggest that their LatA treatments were able to disrupt the endosomal pathway without disrupting clathrin-mediated endocytosis at the flagellar pocket. Do they believe that actin is dispensable in this process? That seems like an important point that should be stated clearly or put in greater context.