‘Hidden’ HCN channels permit pathway-specific synaptic amplification in L2/3 pyramidal neurons

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    The authors used electrophysiology in brain slices and computer modeling and suggest that layer 2/3 pyramidal neurons of the mouse cortex express functional HCN channels, despite little evidence in the past that they are present. The study is useful at the present time, but results are incomplete because the methods, data, and analyses do not always support the conclusions.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Layer 2/3 pyramidal cells (L2/3 PCs) play a crucial role in cortical information transfer. Although the dendritic arbors of L2/3 PCs are impressive, they lack the distinct anatomical compartments characteristic of deeper L5 PCs. For example, many L2/3 PCs do not display an apparent distal tuft region. However, L2/3 PCs receive inputs from both thalamic (bottom-up) and cortical (top-down) inputs, preferentially synapsing onto their proximal and distal dendrites, respectively. Nonuniform organization of channels and NMDA receptors in L2/3 dendrites could serve to independently modulate these information streams to affect learning and behavior, yet whether L2/3 PC dendrites possess this capability has not been established. Here, we found a previously unappreciated non-uniform HCN channel distribution in L2/3 PCs, allowing for pathway-specific gating of NMDA receptor recruitment at bottom-up (proximal) but not top-down (distal) synapses. Interestingly, HCN availability could be regulated via neuromodulation, suggesting that the gain of thalamic and cortical-cortical signals in L2/3 may be independently modified in vivo.

Article activity feed

  1. Author Response

    eLife assessment

    The authors used electrophysiology in brain slices and computer modeling and suggest that layer 2/3 pyramidal neurons of the mouse cortex express functional HCN channels, despite little evidence in the past that they are present. The study is useful at the present time, but results are incomplete because the methods, data, and analyses do not always support the conclusions.

    Public Reviews:

    Reviewer #1 (Public Review):

    The manuscript by Oleh et al. uses in vitro electrophysiology and compartmental modeling (via NEURON) to investigate the expression and function of HCN channels in mouse L2/3 pyramidal neurons. The authors conclude that L2/3 neurons have developmentally regulated HCN channels, the activation of which can be observed when subjected to large hyperpolarizations. They further conclude via blockade experiments that HCN channels in L2/3 neurons influence cellular excitability and pathway-specific EPSP kinetics, which can be neuromodulated. While the authors perform a wide range of slice physiology experiments, concrete evidence that L2/3 cells express functionally relevant HCN channels is limited. There are serious experimental design caveats and confounds that make drawing strong conclusions from the data difficult. Furthermore, the significance of the findings is generally unclear, given modest effect sizes and a lack of any functional relevance, either directly via in vivo experiments or indirectly via strong HCN-mediated changes in known operations/computations/functions of L2/3 neurons.

    Specific points:

    (1) The interpretability and impact of this manuscript are limited due to numerous methodological issues in experimental design, data collection, and analysis. The authors have not followed best practices in the field, and as such, much of the data is ambiguous and/or weak and does not support their interpretations (detailed below). Additionally, the authors fail to appropriately explain their rationale for many of their choices, making it difficult to understand why they did what they did. Furthermore, many important references appear to be missing, both in terms of contextualizing the work and in terms of approach/method. For example, the authors do not cite Kalmbach et al 2018, which performed a directly comparable set of experiments on HCN channels in L2/3 neurons of both humans and mice. This is an unacceptable omission. Additionally, the authors fail to cite prior literature regarding the specificity or lack thereof of Cs+ in blocking HCN. In describing a result, the authors state "In line with previous reports, we found that L2/3 PCs exhibited an unremarkable amount of sag at 'typical' current commands" but they then fail to cite the previous reports.

    We thank the reviewer for the thorough examination of our manuscript; however, we strongly disagree with many of the raised concerns for several reasons, as detailed in an initial response below:

    To address the lack of certain citations, we would like to emphasize that in the introduction section, we did focus on a several decades-long line of investigation into the HCN channel content of layer 2/3 pyramidal cells (L2/3 PCs), where there has undoubtedly been some controversy as to their functional contribution. We did not explicitly cite papers that claimed to find no/little HCN channels/sag- although this would be a significant list of pubs from some excellent senior investigators, as we wanted to avoid shining a negative light on otherwise excellent publications. However, we plan to address this more clearly in the upcoming revision.

    Just to take an example: in the publication mentioned by the reviewer (Kalmbach et al 2018), the investigators did not carry out voltage clamp recordings. Furthermore, the reported input resistance values in the aforementioned paper were far above other reports in mice (Routh et al. 2022, Brandalise et al 2022, Hedrick et al 2012; which were similar and our findings here), suggesting that recordings in Kalmbach were carried out at membrane potentials where HCN activation is less available (Routh, Brager and Johnston 2022).

    Another reason for some mixed findings in the field is undoubtedly due to the small/nonexistent sag in L2/3 current clamp recordings in mice. We also found a small sag, and that we have shown to be explained by the following: The ‘sag’ potential is a biphasic voltage response emerging from a relatively fast passive membrane response and a slower Ih activation. In L2/3 PCs, hyperpolarization-activated currents are apparently faster than previously described and are located proximally (our findings here). Therefore, their recruitment in mouse L2/3 PCs is on a similar timescale as the passive membrane response, resulting in a more monophasic response. Again, we plan to include a full set of citations in the updated introduction section, to highlight the importance of HCN channels in L2/3 PCs in mice and other species. The justification for using cesium (i.e., ‘best practices’) is detailed in the next paragraph.

    (2) A critical experimental concern in the manuscript is the reliance on cesium, a nonspecific blocker, to evaluate HCN channel function. Cesium blocks HCN channels but also acts at potassium channels (and possibly other channels as well). The authors do not acknowledge this or attempt to justify their use of Cs+ and do not cite prior work on this subject. They do not show control experiments demonstrating that the application of Cs+ in their preparation only affects Ih. Additionally, the authors write 1 mM cesium in the text but appear to use 2 mM in the figures. In later experiments, the authors switch to ZD7288, a more commonly used and generally accepted more specific blocker of HCN channels. However, they use a very high concentration, which is also known to produce off-target effects (see Chevaleyre and Castillo, 2002). To make robust conclusions, the authors should have used both blockers (at accepted/conservative concentrations) for all (or at least most) experiments. Using one blocker for some experiments and then another for different experiments is fraught with potential confounds.

    To address the concerns regarding the usage of cesium to block HCN channels, we would like to state that neither cesium nor ZD-7288 are without off-target effects, however in our case the potential off-target effects of external cesium were deemed less impactful, especially concerning AP firing output experiments. Extracellular cesium has been widely accepted as a blocker of HCN channels (Lau et al. 2010, Wickenden et al. 2009, Rateau and Ropert 2005, Hemond et al. 2009, Yang et al. 2015, Matt et al. 2010). However, it is known to act on potassium channels as well, which has mostly been demonstrated with intracellular application (Puil et al. 1981, Fleidervish et al. 2008, Williams et al. 1991, 2008). However, we acknowledge off-target effects and we will better cite the appropriate literature in our manuscript in the revision.

    Although we performed internal control experiments during the recordings, these were not included in the manuscript- which we plan to correct in the revision. These are detailed as follows: during our recordings cesium had no significant effect on action potential halfwidth, ruling out substantial blocking of potassium channels, nor did it affect any other aspects of suprathreshold activity. Furthermore, we observed similar effects on passive properties (resting membrane potential, input resistance) following ZD-7288 as with cesium, which we will also update in our figures. We did acknowledge that ZD-7288 is a widely accepted blocker of HCN, and for this reason we carried out some of our experiments using this pharmacological agent instead of cesium. However, these experiments were always supported by complementary findings using external cesium. For example, the effect of ZD-7288 on EPSPs was confirmed by similar synaptic stimulation experiments using cesium. This is important, as synaptic inputs of L2/3 PCs are modulated by both dendritic sodium (Ferrarese et al. 2018) and calcium channels (Landau 2022), therefore the application of ZD-7288 alone may have been difficult to interpret in isolation.

    On the other hand, ZD-7288 suffers from its own side effects, such as a substantial effect on sodium channels (Wu et al. 2012) and calcium channels (Sánchez-Alonso et al. 2008, Felix et al. 2003). As our aim was to provide functional evidence for the importance of HCN channels, we deemed these effects unacceptable in experiments where AP firing output (e.g., in cell-attached experiments) was measured.

    (3) A stronger case could be made that HCN is expressed in the somatic compartment of L2/3 cells if the authors had directly measured HCN-isolated currents with outside-out or nucleated patch recording (with appropriate leak subtraction and pharmacology). Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work. It has been shown to produce erroneous results over and over again in the field due to well-known space clamp problems (see Rall, Spruston, Williams, etc.). The authors could have also included negative controls, such as recordings in neurons that do not express HCN or in HCN-knockout animals. Without these experiments, the authors draw a false equivalency between the effects of cesium and HCN channels, when the outcomes they describe could be driven simply by multiple other cesium-sensitive currents. Distortions are common in these preparations when attempting to study channels (see Williams and Womzy, J Neuro, 2011). In Fig 2h, cesium-sensitive currents look too large and fast to be from HCN currents alone given what the authors have shown in their earlier current clamp data. Furthermore, serious errors in leak subtraction appear to be visible in Supplementary Figure 1c. To claim that these conductances are solely from HCN may be misleading.

    We disagree with the argument that “Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work”. Although this method is not without its confounds (i.e. space clamp), it is still a useful initial measure as demonstrated countless times in the literature. However, the reviewer is correct that the best approach to establish the somatodendritic distribution of ion channels is by direct somatic and dendritic outside-out patches. Due to the small diameter of L2/3 PC dendrites, these experiments haven’t been carried out yet in the literature for any other ion channel either to our knowledge. Mapping this distribution may be outside the scope of the current manuscript, but it was hard for us to ignore the sheer size of the Cs+ sensitive hyperpolarizing currents in whole cell. Thus, we will opt to report this data.

    Also, we should point out that space clamp-related errors manifest in the overestimation of frequency-dependent features, such as activation kinetics, and underestimation of steady-state current amplitudes. The activation time constant of our measured currents are somewhat faster than previously reported- reducing major concerns regarding space clamp errors. Furthermore, we simply do not understand what “too large… to be from HCN currents” means. We would like to ask the reviewer to point out what the “serious errors in leak subtraction” are, as the measured currents are similar in shape and correction artifacts to previously reported HCN currents (Meng et al. 2011, Li 2011, Zhao et al. 2019, Yu et al. 2004, Zhang et al. 2008, Spinelli et al. 2018, Craven et al. 2006, Ying et al. 2012, Biel et al. 2009).

    Furthermore, we would be grateful if the reviewer would mention the other possible ion channels that are activated at hyperpolarized voltages, have the same voltage dependence as HCN currents, do not show inactivation, influence both input resistance and resting membrane potential, and are blocked by low concentration extracellular cesium.

    (4) The authors present current-clamp traces with some sag, a primary indicator of HCN conductance, in Figure 2. However, they do not show example traces with cesium or ZD7288 blockade. Additionally, the normalization of current injected by cellular capacitance and the lack of reporting of input resistance or estimated cellular size makes it difficult to determine how much current is actually needed to observe the sag, which is important for assessing the functional relevance of these channels. The sag ratio in controls also varies significantly without explanation (Figure 6 vs Figure 7). Could this variability be a result of genetically defined subgroups within L2/3? For example, in humans, HCN expression in L2/3 varies from superficial and deep neurons. The authors do not make an effort to investigate this. Regardless of inconsistencies in either current injection or cell type, the sag ratio appears to be rather modest and similar to what has already been reported previously in other papers.

    We thank the reviewer for pointing out that our explanation for the modest sag ratio might have not been sufficient to properly understand why this measurement cannot be applied to layer 2/3 pyramidal cells. We will clarify this section in the results section. Briefly: sag potential emerges from a relatively (compared to Ih) fast passive membrane response and a slower HCN recruitment. The opposing polarity and different timescales of these two mechanisms results in a biphasic response called “sag” potential. However, if the timescale of these two mechanisms is similar, the voltage response is not predicted to be biphasic. We have shown that hyperpolarization activated currents in our preparations are fast and proximal, therefore they are recruited during the passive response (see Figure 2g.). This means that although a substantial amount of HCN currents are activated during hyperpolarization, their activation will not result in substantial sag. Therefore, sag ratio measurement is not necessarily applicable to approximate the HCN content of L2/3 PCs. We would like to emphasize that sag ratio measurements are correct in case of other cell types, and our aim is not to discredit the method, but rather to show that it cannot be applied in case of mouse L2/3 PCs.

    Our own measurements, similar to others in the literature show that L2/3 PCs exhibit modest sag ratios, however, this does not mean that HCN is not relevant. Ih activation in L2/3 PCs does not manifest in large sag potential but rather in a continuous distortion of steady-state responses (Figure 2b.). The reviewer is correct that L2/3 PCs are non-homogenous, therefore we sampled along the entire L2/3 axis. This yielded some variability in our results (i.e., passive properties); yet we did not observe any cells where hyperpolarizing-activated/Cs+-sensitive currents could not be resolved. As structural variability of L2/3 cells does result in variability in cellular capacitance, we compensated for this variability by injecting cellular capacitance-normalized currents. Our measured cellular capacitances were in accordance with previously published values, in the range of 50-120 pF. Therefore, the injected currents were not outside frequently used values. Together, we would like to state that whether substantial sag potential is present or not, initial estimates of the HCN content for each L2/3 PC should be treated with caution.

    (5) In the later experiments with ZD7288, the authors measured EPSP half-width at greater distances from the soma. However, they use minimal stimulation to evoke EPSPs at increasingly far distances from the soma. Without controlling for amplitude, the authors cannot easily distinguish between attenuation and spread from dendritic filtering and additional activation and spread from HCN blockade. At a minimum, the authors should share the variability of EPSP amplitude versus the change in EPSP half-width and/or stimulation amplitudes by distance. In general, this kind of experiment yields much clearer results if a more precise local activation of synapses is used, such as dendritic current injection, glutamate uncaging, sucrose puff, or glutamate iontophoresis. There are recording quality concerns here as well: the cell pictured in Figure 3a does not have visible dendritic spines, and a substantial amount of membrane is visible in the recording pipette. These concerns also apply to the similar developmental experiment in 6f-h, where EPSP amplitude is not controlled, and therefore, attenuation and spread by distance cannot be effectively measured. The outcome, that L2/3 cells have dendritic properties that violate cable theory, seems implausible and is more likely a result of variable amplitude by proximity.

    To resolve this issue, we will make a supplementary figure showing elicited amplitudes, which showed no significant distance dependence and minimal variability. We thank the reviewer for suggesting an amplitude-halfwidth comparison control. To address the issue of the non-visible spines, we would like to note that these images are of lower magnification. The presence of dendritic spines was confirmed in every recorded pyramidal cell observed using 2P microscopy.

    We would like to emphasize that although our recordings “seemingly” violated the cable theory, this is only true if we assume a completely passive condition. As shown in our manuscript, cable theory was not violated, as the presence of NMDA receptor boosting explained the observed ‘non-Rallian’ phenomenon. We plan to clarify this in the fully revised manuscript.

    (6) Minimal stimulation used for experiments in Figures 3d-i and Figures 4g-h does not resolve the half-width measurement's sensitivity to dendritic filtering, nor does cesium blockade preclude only HCN channel involvement. Example traces should be shown for all conditions in 3h; the example traces shown here do not appear to even be from the same cell. These experiments should be paired (with and without cesium/ZD). The same problem appears in Figure 4, where it is not clear that the authors performed controls and drug conditions on the same cells. 4g also lacks a scale bar, so readers cannot determine how much these measurements are affected by filtering and evoked amplitude variability. Finally, if we are to believe that minimal stimulation is used to evoke responses of single axons with 50% fail rates, NMDA receptor activation should be minimal to begin with. If the authors wish to make this claim, they need to do more precise activation of NMDA-mediated EPSPs and examine the effects of ZD7288 on these responses in the same cell. As the data is presented, it is not possible to draw the conclusion that HCN boosts NMDA-mediated responses in L2/3 neurons.

    As stated in the figure legends, the control and drug application traces are from the same cell, both in figure 3 and figure 4, and the scalebar is not included as the amplitudes were normalized for clarity. We have address the effects of dendritic filtering above in answer (5), and cesium blockade above in answer (2). To reiterate, dendritic filtering alone cannot explain our observations, and cesium is often a better choice for blocking HCN channels compared to ZD-7288, which blocks sodium channels as well. When an excitatory synaptic signal arrives onto a pyramidal cell in typical conditions, neurotransmitter sensitive receptors transmit a synaptic current to the dendritic spine. This dendritic spine is electrically isolated by the high resistance of the spine neck and due to the small membrane surface of the spine, the synaptic current elicits remarkably large voltage changes. These voltage changes can be large enough to depolarize the spine close to zero millivolts upon even single small inputs (Jayant et al. 2016). Therefore, to state that single inputs arriving to dendritic spines cannot be large enough to recruit NMDA receptor activation is incorrect. This is further exemplified by the substantial literature showing ‘miniature’ NMDA recruitment via stochastic vesicle release alone.

    (7) The quality of recordings included in the dataset has concerning variability: for example, resting membrane potentials vary by >15-20 mV and the AP threshold varies by 20 mV in controls. This is indicative of either a very wide range of genetically distinct cell types that the authors are ignoring or the inclusion of cells that are either unhealthy or have bad seals.

    Although we are aware of the diversity of L2/3 PCs, resolving further layer depth differences is outside the scope of our current manuscript. However, as shown in Kalmbech et al, resting membrane potential can greatly vary (>15-20 mV) in L2/3 PCs depending on distance from pia. We acknowledge that the variance in AP threshold is large and could be due to genetically distinct cell types. Therefore, we plan to present AP peak/width information in the revision, which showed a significantly smaller variability, therefore validating our recording conditions.

    (8) The authors make no mention of blocking GABAergic signaling, so it must be assumed that it is intact for all experiments. Electrical stimulation can therefore evoke a mixture of excitatory and inhibitory responses, which may well synapse at very different locations, adding to interpretability and variability concerns.

    We thank the reviewer for pointing out our lack of detail regarding the GABAergic signaling blocker SR 95531. We did include this drug in our recordings of signal summation, so GABAergic responses did not contaminate our recordings. We plan to clarify in the revision.

    (9) The investigation of serotonergic interaction with HCN channels produces modest effect sizes and suffers the same problems as described above.

    We do not agree with the reviewer that 50% drop in neuronal AP firing responses (Figure 7b) was a modest effect size. Thus we plan to keep this data in the manuscript.

    (10) The computational modeling is not well described and is not biologically plausible. Persistent and transient K channels are missing. Values for other parameters are not listed. The model does not seem to follow cable theory, which, as described above, is not only implausible but is also not supported by the experimental findings.

    The model was downloaded from the Cell Type Database from the Allen Institute, with only minor modifications including the addition of dendritic HCN channels and NDMA receptors- which were varied along a wide parameter space to find a ‘best fit’ to our observations. These additions were necessary to recapitulate our experimental findings. We agree the model likely does not fully recapitulate all aspects of the dendrites, which as we hope to convey in this manuscript, are not fully resolved in mouse L2/3 PCs. This is a published neuronal model, and despite its potential shortcomings, is one among a handful of open-source neuronal models of fully reconstructed L2/3 PCs. We are open to improvement suggestions.

    Reviewer #2 (Public Review):

    Summary:

    This paper by Olah et al. uncovers a previously unknown role of HCN channels in shaping synaptic inputs to L2/3 cortical neurons. The authors demonstrate using slice electrophysiology and computational modeling that, unlike layer 5 pyramidal neurons, L2/3 neurons have an enrichment of HCN channels in the proximal dendrites. This location provides a locus of neuromodulation for inputs onto the proximal dendrites from L4 without an influence on distal inputs from L1. The authors use pharmacology to demonstrate the effect of HCN channels on NMDA-mediated synaptic inputs from L4. The authors further demonstrate the developmental time course of HCN function in L2/3 pyramidal neurons. Taken together, this a well-constructed investigation of HCN channel function and the consequences of these channels on synaptic integration in L2/3 pyramidal neurons.

    Strengths:

    The authors use careful, well-constrained experiments using multiple pharmacological agents to asses HCN channel contributions to synaptic integrations. The authors also use a voltage clamp to directly measure the current through HCN channels across developmental ages. The authors also provide supplemental data showing that their observation is consistent across multiple areas of the cerebral cortex.

    Weaknesses:

    The gradient of the HCN channel function is based almost exclusively on changes in EPSP width measured at the soma. While providing strong evidence for the presence of HCN current in L2/3 neurons, there are space clamp issues related to the use of somatic whole-cell voltage clamps that should be considered in the discussion.

    We thank the reviewer for pointing out our careful and well-constrained experiments and for making suggestions. The potential effects of space clamp errors will be detailed in the discussion section (see extended explanations under Reviewer 1).

    Reviewer #3 (Public Review):

    Summary:

    The authors study the function of HCN channels in L2/3 pyramidal neurons, employing somatic whole-cell recordings in acute slices of visual cortex in adult mice and a bevy of technically challenging techniques. Their primary claim is a non-uniform HCN distribution across the dendritic arbor with a greater density closer to the soma (roughly opposite of the gradient found in L5 PT-type neurons). The second major claim is that multiple sources of long-range excitatory input (cortical and thalamic) are differentially affected by the HCN distribution. They further describe an interesting interplay of NMDAR and HCN, serotonergic modulation of HCN, and compare HCN-related properties at 1, 2 and 6 weeks of age. Several results are supported by biophysical simulations.

    Strengths:

    The authors collected data from both male and female mice, at an age (6-10 weeks) that permits comparison with in vivo studies, in sufficient numbers for each condition, and they collected a good number of data points for almost all figure panels. This is all the more positive, considering the demanding nature of multi-electrode recording configurations and pipette-perfusion. The main strength of the study is the question and focus.

    Weaknesses:

    Unfortunately, in its present form, the main claims are not adequately supported by the experimental evidence: primarily because the evidence is indirect and circumstantial, but also because multiple unusual experimental choices (along with poor presentation of results) undermine the reader's confidence. Additionally, the authors overstate the novelty of certain results and fail to cite important related publications. Some of these weaknesses can be addressed by improved analysis and statistics, resolving inconsistent data across figures, reorganizing/improving figure panels, more complete methods, improved citations, and proofreading. In particular, given the emphasis on EPSPs, the primary data (for example EPSPs, overlaid conditions) should be shown much more.

    However, on the experimental side, addressing the reviewer's concerns would require a very substantial additional effort: direct measurement of HCN density at different points in the dendritic arbor and soma; the internal solution chosen here (K-gluconate) is reported to inhibit HCN; bath-applied cesium at the concentrations used blocks multiple potassium channels, i.e. is not selective for HCN (the fact that the more selective blocker ZD7288 was used in a subset of experiments makes the choice of Cs+ as the primary blocker all the more curious); pathway-specific synaptic stimulation, for example via optogenetic activation of specific long-range inputs, to complement / support / verify the layer-specific electrical stimulation.

    We thank the reviewer for their very careful examination of our manuscript and helpful suggestions. We will address the concerns raised in the review and present substantially more raw traces in our figures. Although direct dendritic HCN mapping measurements are likely outside the scope of the current manuscript due to the morphological constraints presented by L2/3 PCs (which explains why no other full dendritic nonlinearity distribution has been described in L2/3 PCs with this method), we will nonetheless supplement our manuscript with additional suggested experiments. For example we plan to include the excellent suggestion of pathway-specific optogenetic stimulation to further validate the disparate effect of HCN channels for distal and proximal inputs. We will also include control measurements using different internal solutions. We agree that ZD-7288 is a widely accepted blocker of HCN channels. However, the off-target effects on sodium channels may have significantly confounded our measurements of AP output using extracellular stimulation. Therefore we chose cesium as the primary blocker for those experiments, but did validate several other Cs+-based results with ZD-7288. These controls will also be represented in a more clear fashion in a new supplementary figure.

  2. eLife assessment

    The authors used electrophysiology in brain slices and computer modeling and suggest that layer 2/3 pyramidal neurons of the mouse cortex express functional HCN channels, despite little evidence in the past that they are present. The study is useful at the present time, but results are incomplete because the methods, data, and analyses do not always support the conclusions.

  3. Reviewer #1 (Public Review):

    The manuscript by Oleh et al. uses in vitro electrophysiology and compartmental modeling (via NEURON) to investigate the expression and function of HCN channels in mouse L2/3 pyramidal neurons. The authors conclude that L2/3 neurons have developmentally regulated HCN channels, the activation of which can be observed when subjected to large hyperpolarizations. They further conclude via blockade experiments that HCN channels in L2/3 neurons influence cellular excitability and pathway-specific EPSP kinetics, which can be neuromodulated. While the authors perform a wide range of slice physiology experiments, concrete evidence that L2/3 cells express functionally relevant HCN channels is limited. There are serious experimental design caveats and confounds that make drawing strong conclusions from the data difficult. Furthermore, the significance of the findings is generally unclear, given modest effect sizes and a lack of any functional relevance, either directly via in vivo experiments or indirectly via strong HCN-mediated changes in known operations/computations/functions of L2/3 neurons.

    Specific points:

    (1) The interpretability and impact of this manuscript are limited due to numerous methodological issues in experimental design, data collection, and analysis. The authors have not followed best practices in the field, and as such, much of the data is ambiguous and/or weak and does not support their interpretations (detailed below). Additionally, the authors fail to appropriately explain their rationale for many of their choices, making it difficult to understand why they did what they did. Furthermore, many important references appear to be missing, both in terms of contextualizing the work and in terms of approach/method. For example, the authors do not cite Kalmbach et al 2018, which performed a directly comparable set of experiments on HCN channels in L2/3 neurons of both humans and mice. This is an unacceptable omission. Additionally, the authors fail to cite prior literature regarding the specificity or lack thereof of Cs+ in blocking HCN. In describing a result, the authors state "In line with previous reports, we found that L2/3 PCs exhibited an unremarkable amount of sag at 'typical' current commands" but they then fail to cite the previous reports.

    (2) A critical experimental concern in the manuscript is the reliance on cesium, a nonspecific blocker, to evaluate HCN channel function. Cesium blocks HCN channels but also acts at potassium channels (and possibly other channels as well). The authors do not acknowledge this or attempt to justify their use of Cs+ and do not cite prior work on this subject. They do not show control experiments demonstrating that the application of Cs+ in their preparation only affects Ih. Additionally, the authors write 1 mM cesium in the text but appear to use 2 mM in the figures. In later experiments, the authors switch to ZD7288, a more commonly used and generally accepted more specific blocker of HCN channels. However, they use a very high concentration, which is also known to produce off-target effects (see Chevaleyre and Castillo, 2002). To make robust conclusions, the authors should have used both blockers (at accepted/conservative concentrations) for all (or at least most) experiments. Using one blocker for some experiments and then another for different experiments is fraught with potential confounds.

    (3) A stronger case could be made that HCN is expressed in the somatic compartment of L2/3 cells if the authors had directly measured HCN-isolated currents with outside-out or nucleated patch recording (with appropriate leak subtraction and pharmacology). Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work. It has been shown to produce erroneous results over and over again in the field due to well-known space clamp problems (see Rall, Spruston, Williams, etc.). The authors could have also included negative controls, such as recordings in neurons that do not express HCN or in HCN-knockout animals. Without these experiments, the authors draw a false equivalency between the effects of cesium and HCN channels, when the outcomes they describe could be driven simply by multiple other cesium-sensitive currents. Distortions are common in these preparations when attempting to study channels (see Williams and Womzy, J Neuro, 2011). In Fig 2h, cesium-sensitive currents look too large and fast to be from HCN currents alone given what the authors have shown in their earlier current clamp data. Furthermore, serious errors in leak subtraction appear to be visible in Supplementary Figure 1c. To claim that these conductances are solely from HCN may be misleading.

    (4) The authors present current-clamp traces with some sag, a primary indicator of HCN conductance, in Figure 2. However, they do not show example traces with cesium or ZD7288 blockade. Additionally, the normalization of current injected by cellular capacitance and the lack of reporting of input resistance or estimated cellular size makes it difficult to determine how much current is actually needed to observe the sag, which is important for assessing the functional relevance of these channels. The sag ratio in controls also varies significantly without explanation (Figure 6 vs Figure 7). Could this variability be a result of genetically defined subgroups within L2/3? For example, in humans, HCN expression in L2/3 varies from superficial and deep neurons. The authors do not make an effort to investigate this. Regardless of inconsistencies in either current injection or cell type, the sag ratio appears to be rather modest and similar to what has already been reported previously in other papers.

    (5) In the later experiments with ZD7288, the authors measured EPSP half-width at greater distances from the soma. However, they use minimal stimulation to evoke EPSPs at increasingly far distances from the soma. Without controlling for amplitude, the authors cannot easily distinguish between attenuation and spread from dendritic filtering and additional activation and spread from HCN blockade. At a minimum, the authors should share the variability of EPSP amplitude versus the change in EPSP half-width and/or stimulation amplitudes by distance. In general, this kind of experiment yields much clearer results if a more precise local activation of synapses is used, such as dendritic current injection, glutamate uncaging, sucrose puff, or glutamate iontophoresis. There are recording quality concerns here as well: the cell pictured in Figure 3a does not have visible dendritic spines, and a substantial amount of membrane is visible in the recording pipette. These concerns also apply to the similar developmental experiment in 6f-h, where EPSP amplitude is not controlled, and therefore, attenuation and spread by distance cannot be effectively measured. The outcome, that L2/3 cells have dendritic properties that violate cable theory, seems implausible and is more likely a result of variable amplitude by proximity.

    (6) Minimal stimulation used for experiments in Figures 3d-i and Figures 4g-h does not resolve the half-width measurement's sensitivity to dendritic filtering, nor does cesium blockade preclude only HCN channel involvement. Example traces should be shown for all conditions in 3h; the example traces shown here do not appear to even be from the same cell. These experiments should be paired (with and without cesium/ZD). The same problem appears in Figure 4, where it is not clear that the authors performed controls and drug conditions on the same cells. 4g also lacks a scale bar, so readers cannot determine how much these measurements are affected by filtering and evoked amplitude variability. Finally, if we are to believe that minimal stimulation is used to evoke responses of single axons with 50% fail rates, NMDA receptor activation should be minimal to begin with. If the authors wish to make this claim, they need to do more precise activation of NMDA-mediated EPSPs and examine the effects of ZD7288 on these responses in the same cell. As the data is presented, it is not possible to draw the conclusion that HCN boosts NMDA-mediated responses in L2/3 neurons.

    (7) The quality of recordings included in the dataset has concerning variability: for example, resting membrane potentials vary by >15-20 mV and the AP threshold varies by 20 mV in controls. This is indicative of either a very wide range of genetically distinct cell types that the authors are ignoring or the inclusion of cells that are either unhealthy or have bad seals.

    (8) The authors make no mention of blocking GABAergic signaling, so it must be assumed that it is intact for all experiments. Electrical stimulation can therefore evoke a mixture of excitatory and inhibitory responses, which may well synapse at very different locations, adding to interpretability and variability concerns.

    (9) The investigation of serotonergic interaction with HCN channels produces modest effect sizes and suffers the same problems as described above.

    (10) The computational modeling is not well described and is not biologically plausible. Persistent and transient K channels are missing. Values for other parameters are not listed. The model does not seem to follow cable theory, which, as described above, is not only implausible but is also not supported by the experimental findings.

    Taken together, there are serious methodological and analytical concerns that need to be addressed before the authors' claims can be supported. Combined with the small effect sizes and high data variability throughout the paper, this makes it hard to see how the manuscript could make a strong contribution to advancing our understanding of L2/3 cortical pyramidal neuron function.

  4. Reviewer #2 (Public Review):

    Summary:

    This paper by Olah et al. uncovers a previously unknown role of HCN channels in shaping synaptic inputs to L2/3 cortical neurons. The authors demonstrate using slice electrophysiology and computational modeling that, unlike layer 5 pyramidal neurons, L2/3 neurons have an enrichment of HCN channels in the proximal dendrites. This location provides a locus of neuromodulation for inputs onto the proximal dendrites from L4 without an influence on distal inputs from L1. The authors use pharmacology to demonstrate the effect of HCN channels on NMDA-mediated synaptic inputs from L4. The authors further demonstrate the developmental time course of HCN function in L2/3 pyramidal neurons. Taken together, this a well-constructed investigation of HCN channel function and the consequences of these channels on synaptic integration in L2/3 pyramidal neurons.

    Strengths:

    The authors use careful, well-constrained experiments using multiple pharmacological agents to asses HCN channel contributions to synaptic integrations. The authors also use a voltage clamp to directly measure the current through HCN channels across developmental ages. The authors also provide supplemental data showing that their observation is consistent across multiple areas of the cerebral cortex.

    Weaknesses:

    The gradient of the HCN channel function is based almost exclusively on changes in EPSP width measured at the soma. While providing strong evidence for the presence of HCN current in L2/3 neurons, there are space clamp issues related to the use of somatic whole-cell voltage clamps that should be considered in the discussion.

  5. Reviewer #3 (Public Review):

    Summary:

    The authors study the function of HCN channels in L2/3 pyramidal neurons, employing somatic whole-cell recordings in acute slices of visual cortex in adult mice and a bevy of technically challenging techniques. Their primary claim is a non-uniform HCN distribution across the dendritic arbor with a greater density closer to the soma (roughly opposite of the gradient found in L5 PT-type neurons). The second major claim is that multiple sources of long-range excitatory input (cortical and thalamic) are differentially affected by the HCN distribution. They further describe an interesting interplay of NMDAR and HCN, serotonergic modulation of HCN, and compare HCN-related properties at 1, 2 and 6 weeks of age. Several results are supported by biophysical simulations.

    Strengths:

    The authors collected data from both male and female mice, at an age (6-10 weeks) that permits comparison with in vivo studies, in sufficient numbers for each condition, and they collected a good number of data points for almost all figure panels. This is all the more positive, considering the demanding nature of multi-electrode recording configurations and pipette-perfusion. The main strength of the study is the question and focus.

    Weaknesses:

    Unfortunately, in its present form, the main claims are not adequately supported by the experimental evidence: primarily because the evidence is indirect and circumstantial, but also because multiple unusual experimental choices (along with poor presentation of results) undermine the reader's confidence. Additionally, the authors overstate the novelty of certain results and fail to cite important related publications. Some of these weaknesses can be addressed by improved analysis and statistics, resolving inconsistent data across figures, reorganizing/improving figure panels, more complete methods, improved citations, and proofreading. In particular, given the emphasis on EPSPs, the primary data (for example EPSPs, overlaid conditions) should be shown much more.

    However, on the experimental side, addressing the reviewer's concerns would require a very substantial additional effort: direct measurement of HCN density at different points in the dendritic arbor and soma; the internal solution chosen here (K-gluconate) is reported to inhibit HCN; bath-applied cesium at the concentrations used blocks multiple potassium channels, i.e. is not selective for HCN (the fact that the more selective blocker ZD7288 was used in a subset of experiments makes the choice of Cs+ as the primary blocker all the more curious); pathway-specific synaptic stimulation, for example via optogenetic activation of specific long-range inputs, to complement / support / verify the layer-specific electrical stimulation.