The ketone body β-hydroxybutyrate rescues neurodevelopmental deficits in the GABAergic system of daf-18/PTEN Caenorhabditis elegans mutants

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study convincingly demonstrates the ability of reverting a neurodevelopmental defect with a dietary intervention. While the exact mechanisms remain to be elucidated, the authors establish a simple but important system to study the PI3K/Akt/FOXO pathway but also the action of ketone bodies and their potential therapeutic use. This study will be of particular interest to the large community of scientists studying E/I disequilibrium in the nervous system.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

A finely tuned balance between excitation and inhibition (E/I) is essential for proper brain function. Disruptions in the GABAergic system, which alter this equilibrium, are a common feature in various types of neurological disorders, including Autism Spectrum Disorders (ASDs). Mutations in PTEN, the main negative regulator of the PI3K/Akt pathway, are strongly associated with ASD. However, it is unclear whether PTEN deficiencies can differentially affect inhibitory and excitatory signaling. Using the C. elegans neuromuscular system, where both excitatory (cholinergic) and inhibitory (GABAergic) inputs regulate muscle activity, we found that daf-18 / PTEN mutations specifically impact GABAergic (but not cholinergic) neurodevelopment and function. This selective impact results in a deficiency in inhibitory signaling. The specific defects observed in the GABAergic system in daf-18/PTEN mutants are due to reduced activity of DAF-16/FOXO during development. Ketogenic diets (KGDs) have proven effective for disorders associated with E/I imbalances. However, the mechanisms underlying their action remain largely elusive. Importantly, we found that a diet enriched with the ketone body β-hydroxybutyrate during early development induces DAF-16/FOXO, therefore improving GABAergic neurodevelopment and function in daf-18/PTEN mutants. Our study provides fundamental insights linking PTEN mutations and neurodevelopmental defects and delves into the mechanisms underlying KGDs’ positive effects on neuronal disorders characterized by E/I imbalances. * daf-18/PTEN deficiency in C. elegans results in a specific impairment of inhibitory GABAergic signaling, while the excitatory cholinergic signaling remains unaffected. *The dysfunction of GABAergic neurons in these mutants arises from the inactivity of the transcription factor DAF-16/FOXO during their development, resulting in conspicuous morphological and functional alterations. *A diet enriched with the ketone body β-hydroxybutyrate, which induces DAF-16/FOXO activity, mitigates the functional and morphological defects in the development of GABAergic neurons *β-hydroxybutyrate supplementation during the early stages of development is both necessary and sufficient to achieve these rescuing effects on GABAergic signaling in daf-18/PTEN mutants.

Article activity feed

  1. eLife assessment

    This study convincingly demonstrates the ability of reverting a neurodevelopmental defect with a dietary intervention. While the exact mechanisms remain to be elucidated, the authors establish a simple but important system to study the PI3K/Akt/FOXO pathway but also the action of ketone bodies and their potential therapeutic use. This study will be of particular interest to the large community of scientists studying E/I disequilibrium in the nervous system.

  2. Reviewer #1 (Public Review):

    Summary:

    This interesting study explores the mechanism behind an increased susceptibility of daf-18/PTEN mutant nematodes to paralyzing drugs that exacerbate cholinergic transmission. The authors use state-of-the-art genetics and neurogenetics coupled with locomotor behavior monitoring and neuroanatomical observations using gene expression reporters to show that the susceptibility occurs due to low levels of DAF-18/PTEN in developing inhibitory GABAergic neurons early during larval development (specifically, during the larval L1 stage). DAF-18/PTEN is convincingly shown to act cell-autonomously in these cells upstream of the PI3K-PDK-1-AKT-DAF-16/FOXO pathway, consistent with its well-known role as an antagonist of this conserved signaling pathway. The authors exclude a role for the TOR pathway in this process and present evidence implicating selectivity towards developing GABAergic neurons. Finally, the authors show that a diet supplemented with a ketogenic body, β-hydroxybutyrate, which also counteracts the PI3K-PDK-1-AKT pathway, promoting DAF-16/FOXO activity, partially rescues the proper development (morphology and function) of GABAergic neurons in daf-18/PTEN mutants, but only if the diet is provided early during larval development. This strongly suggests that the critical function of DAF-18/PTEN in developing inhibitory GABAergic neurons is to prevent excessive PI3K-PDK-1-AKT activity during this critical and particularly sensitive period of their development in juvenile L1 stage worms. Whether or not the sensitivity of GABAergic neurons to DAF-18/PTEN function is a defining and widespread characteristic of this class of neurons in C. elegans and other animals, or rather a particularity of the unique early-stage GABAergic neurons investigated remains to be determined.

    Strengths:

    The study reports interesting and important findings, advancing the knowledge of how daf-18/PTEN and the PI3K-PDK-1-AKT pathway can influence neurodevelopment, and providing a valuable paradigm to study the selectivity of gene activities towards certain neurons. It also defines a solid paradigm to study the potential of dietary interventions (such as ketogenic diets) or other drug treatments to counteract (prevent or revert?) neurodevelopment defects and stimulate DAF-16/FOXO activity.

    Weaknesses:

    (1 )Insufficiently detailed methods and some inconsistencies between Figure 4 and the text undermine the full understanding of the work and its implications.

    The incomplete methods presented, the imprecise display of Figure 4, and the inconsistency between this figure and the text, make it presently unclear what are the precise timings of observations and treatments around the L1 stage. What exactly do E-L1 and L1-L2 mean in the figure? The timing information is critical for the understanding of the implications of the findings because important changes take place with the whole inhibitory GABAergic neuronal system during the L1 stage into the L2 stage. The precise timing of the events such as neuronal births and remodelling events are well-described (e.g., Figure 2 in Hallam and Jin, Nature 1998; Fig 7 in Mulcahy et al., Curr Biol, 2022). Likewise, for proper interpretation of the implication of the findings, it is important to describe the nature of the defects observed in L1 larvae reported in Figure 1E - at present, a representative figure is shown of a branched commissure. What other types of defects, if any, are observed in early L1 larvae? The nature of the defects will be informative. Are they similar or not to the defects observed in older larvae?

    (2) The claim of proof of concept for a reversal of neurodevelopment defects is not fully substantiated by data.

    The authors state that the work "constitutes a proof of concept of the ability to revert a neurodevelopmental defect with a dietary intervention" (Abstract, Line 56), however, the authors do not present sufficient evidence to distinguish between a "reversal" or prevention of the neurodevelopment defect by the dietary intervention. This clarification is critical for therapeutic purposes and claims of proof-of-concept. From the best of my understanding, reversal formally means the defect was present at the time of therapy, which is then reverted to a "normal" state with the therapy. On the other hand, prevention would imply an intervention that does not allow the defect to develop to begin with, i.e., the altered or defective state never arises. In the context of this study, the authors do not convincingly show reversal. This would require showing "embryonic" GABAergic neuron defects or showing convincing data in newly hatched L1 (0-1h), which is unclear if they do so or not, as I have failed to find this information in the manuscript. Again, the method description needs to be improved and the implications can be very different if the data presented in Figure 2D-E regard newly born L1 animals (0-1h) or L1 animals at say 5-7h after hatching. This is critical because the development of the embryonically-born GABAergic DD neurons, for instance, is not finalized embryonically. Their neurites still undergo outgrowth (albeit limited) upon L1 birth (see DataS2 in Mulcahy et al., Curr Biol 2022), hence they are susceptible to both committing developmental errors and to responding to nutritional interventions to prevent them. In contrast to embryonic GABAergic neurons, embryonic cholinergic neurons (DA/DB) do not undergo neurite outgrowth post-embryonically (Mulcahy et al., Curr Biol 2022), a fact which could provide some mechanistic insight considering the data presented. However, neurites from other post-embryonically-born neurons also undergo outgrowth post-embryonically, but mostly during the second half of the L1 stage following their birth up to mid-L2, with significant growth occurring during the L1-L2 transition. These are the cholinergic (VA/VB and AS neurons) and GABAergic (VD) neurons. The fact that AS neurons undergo a similar amount of outgrowth as VD neurons is informative if VD neurons are or are not susceptible to daf-18/PTEN activity. Independently, DD neurons are still quite unique on other aspects (see below), which could also bring insight into their selective response.

    Finally, even adjusting the claim to "constitutes a proof-of-concept of the ability of preventing a neurodevelpmental defect with a dietary intervention" would not be completely precise, because it is unclear how much this work "constitutes a proof of concept". This is because, unless I misunderstood something, dietary interventions are already applied to prevent neurodevelopment defects, such as when folic acid supplementation is recommended to pregnant women to prevent neural tube defects in newborns.

    (3) The data presented do not warrant the dismissal of DD remodeling as a contributing factor to the daf-18/PTEN defects.

    Inhibitory GABAergic DD neurons are quite unique cells. They are well-known for their very particular property of remodeling their synaptic polarity (DD neurons switch the nature of their pre- and post-synaptic targets without changing their wiring). This process is called DD remodeling. It starts in the second half of the L1 stage and finishes during the L2 stage. Unfortunately, the fact that the authors find a specific defect in early GABAergic neurons (which are very likely these unique DD neurons) is not explored in sufficient detail and depth. The facts that these neurons are not fully developed at L1, that they still undergo limited neurite growth, and that they are poised for striking synaptic plasticity in a few hours set them apart from the other explored neurons, such as early cholinergic neurons, which show a more stable dynamics and connectivity at L1 (see Mulcahy et al., Curr Biol 2022).

    The authors use their observation that daf-18/PTEN mutants present morphological defects in GABAergic neurons prior to DD remodeling to dismiss the possibility that the DAF-18/PTEN-dependent effects are "not a consequence of deficient rearrangement during the early larval stages". However, DD remodeling is just another cell-fate-determined process and as such, its timing, for instance, can be affected by mutations in genes that affect cell fates and developmental decisions, such as daf-18 and daf-16, which affect developmental fates such as those related with the dauer fate. Specifically, the authors do not exclude the possibility that the defects observed in the absence of either gene could be explained by precocious DD remodeling. Precocious DD remodeling can occur when certain pathways, such as the lin-14 heterochronic pathway, are affected. Interestingly, lin-14 has been linked with daf-16/FOXO in at least two ways: during lifespan determination (Boehm and Slack, Science 2005) and in the L1/L2 stages via the direct negative regulation of an insulin-like peptide gene ins-33 (Hristova et al., Mol Cell Bio 2005). It is likely that the prevention of DD dysfunction requires keeping insulin signaling in check (downregulated) in DD neurons in early larval stages, which seems to coincide with the critical timing and function of daf-18/PTEN. Hence, it will be interesting to test the involvement of these genes in the daf-18/daf-16 effects observed by the authors.

    Discussion on the impact of the work on the field and beyond:

    The authors significantly advance the field by bringing insight into how DAF-18/PTEN affects neurodevelopment, but fall short of understanding the mechanism of selectivity towards GABAergic neurons, and most importantly, of properly contextualizing their findings within the state-of-the-art C. elegans biology.

    For instance, the authors do not pinpoint which type of GABAergic neuron is affected, despite the fact that there are two very well-described populations of ventral nerve cord inhibitory GABAergic neurons with clear temporal and cell fate differences: the embryonically-born DD neurons and the post-embryonically-born VD neurons. The time point of the critical period apparently defined by the authors (pending clarifications of methods, presentation of all data, and confirmation of inconsistencies between the text and figures in the submitted manuscript) could suggest that DAF-18/PTEN is required in either or both populations, which would have important and different implications. An effect on DD neurons seems more likely because an image is presented (Figure 2D) of a defect in an L1 daf-18/PTEN mutant larva with 6 neurons (which means the larva was processed at a time when VD neurons were not yet born or expressing pUnc-47, so supposedly it is an image of a larva in the first half of the L1 stage (0-~7h?)). DD neurons are also likely the critical cells here because the neurodevelopment errors are partially suppressed when the ketogenic diet is provided at an "early" L1 stage, but not later (e.g., from L2-L3, according to the text, L2-L4 according to the figure? ).

    This study brings important contributions to the understanding of GABAergic neuron development in C. elegans, but unfortunately, it is justified and contextualized mostly in distantly-related fields - where the study has a dubious impact at this stage rather than in the central field of the work (post-embryonic development of C. elegans inhibitory circuits) where the study has stronger impact. This study is fundamentally about a cell fate determination event that occurs in a nutritionally-sensitive developmental stage (post-embryonic L1 larval stage) yet the introduction and discussion are focused on more distantly related problems such as excitatory/inhibitory (E/I) balance, pathophysiology of human diseases, and treatments for them. Whereas speculation is warranted in the discussion, the reduced in-depth consideration of the known biology of these neurons and organisms weakens the impact of the study as redacted. For instance, the critical role of DAF-18/PTEN seems to occur at the early L1 larval stage, a stage that is particularly sensitive to nutritional conditions. The developmental progression of L1 larvae is well-known to be sensitive to nutrition - eg, L1 larvae arrest development in the absence of food, something that is explored in nematode labs to synchronize animals at the L1 stage by allowing embryos to hatch into starvation conditions (water). Development resumes when they are exposed to food. Hence, the extensive postembryonic developmental trajectory that GABAergic neurons need to complete is expected to be highly susceptible to nutrition. Is it? The sensitivity towards the ketogenic diet intervention seems to favor this. In this sense, the attribution of the findings to issues with the nutrition-sensitive insulin-like signaling pathway seems quite plausible, yet this possibility seems insufficiently considered and discussed.

    Finally, the fact that imbalances in excitatory/inhibitory (E/I) inputs are linked to Autism Spectrum Disorders (ASD) is used to justify the relevance of the study and its findings. Maybe at this stage, the speculation would be more appropriate if restricted to the discussion. In order to be relevant to ASD, for instance, the selectivity of PTEN towards inhibitory neurons should occur in humans too. However, at present, the E/I balance alteration caused by the absence of daf-18/PTEN in C. elegans could simply be a coincidence due to the uniqueness of the post-embryonic developmental program of GABAergic neurons in C. elegans. To be relevant, human GABAergic neurons should also pass through a unique developmental stage that is critically susceptible to the PI3K-PDK1-AKT pathway in order for DAF-18/PTEN to have any role in determining their function. Is this the case? Hence, even in the discussion, where the authors state that "this study provides universally relevant information on.... the mechanisms underlying the positive effects of ketogenic diets on neuronal disorders characterized by GABA dysfunction and altered E/I ratios", this claim seems unsubstantiated as written particularly without acknowledging/mentioning the criteria that would have to be fulfilled and demonstrated for this claim to be true.

  3. Reviewer #2 (Public Review):

    Summary:

    Disruption of the excitatory/inhibitory (E/I) balance has been reported in Autism Spectrum Disorders (ASD), with which PTEN mutations have been associated. Giunti et al choose to explore the impact of PTEN mutations on the balance between E/I signaling using as a platform the C. elegans neuromuscular system where both cholinergic (E) and GABAergic (I) motor neurons regulate muscle contraction and relaxation. Mutations in daf-18/PTEN specifically affect morphologically and functionally the GABAergic (I) system, while leaving the cholinergic (E) system unaffected. The study further reveals that the observed defects in the GABAergic system in daf-18/PTEN mutants are attributed to reduced activity of DAF-16/FOXO during development.

    Moreover, ketogenic diets (KGDs), known for their effectiveness in disorders associated with E/I imbalances such as epilepsy and ASD, are found to induce DAF-16/FOXO during early development. Supplementation with β-hydroxybutyrate in the nematode at early developmental stages proves to be both necessary and sufficient to correct the effects on GABAergic signaling in daf-18/PTEN mutants.

    Strengths:

    The authors combined pharmacological, behavioral, and optogenetic experiments to show the GABAergic signaling impairment at the C. elegans neuromuscular junction in DAF-18/PTEN and DAF-16/FOXO mutants. Moreover, by studying the neuron morphology, they point towards neurodevelopmental defects in the GABAergic motoneurons involved in locomotion. Using the same set of experiments, they demonstrate that a ketogenic diet can rescue the inhibitory defect in the daf-18/PTEN mutant at an early stage.

    Weaknesses:

    The morphological experiments hint towards a pre-synaptic defect to explain the GABAergic signaling impairment, but it would have also been interesting to check the post-synaptic part of the inhibitory neuromuscular junctions such as the GABA receptor clusters to assess if the impairment is only presynaptic or both post and presynaptic.

    Moreover, all observations done at the L4 stage and /or adult stage don't discriminate between the different GABAergic neurons of the ventral nerve cord, ie the DDs which are born embryonically and undergo remodeling at the late L1 stage, and VDs which are born post-embryonically at the end of the L1 stage. Those additional elements would provide information on the mechanism of action of the FOXO pathway and the ketone bodies.

    Conclusion:

    Giunti et al provide fundamental insights into the connection between PTEN mutations and neurodevelopmental defects through DAF-16/FOXO and shed light on the mechanisms through which ketogenic diets positively impact neuronal disorders characterized by E/I imbalances.

  4. Reviewer #3 (Public Review):

    Summary:

    This is a conceptually appealing study by Giunti et al in which the authors identify a role for PTEN/daf-18 and daf-16/FOXO in the development of inhibitory GABA neurons, and then demonstrate that a diet rich in ketone body β-hydroxybutyrate partially suppresses the PTEN mutant phenotypes. The authors use three assays to assess their phenotypes: (1) pharmacological assays (with levamisole and aldicarb); (2) locomotory assays and (3) cell morphological assays. These assays are carefully performed and the article is clearly written. While neurodevelopmental phenotypes had been previously demonstrated for PTEN/daf-18 and daf-16/FOXO (in other neurons), and while KB β-hydroxybutyrate had been previously shown to increase daf-16/FOXO activity (in the context of aging), this study is significant because it demonstrates the importance of KB β-hydroxybutyrate and DAF-16 in the context of neurodevelopment. Conceptually, and to my knowledge, this is the first evidence I have seen of a rescue of a developmental defect with dietary metabolic intervention, linking, in an elegant way, the underpinning genetic mechanisms with novel metabolic pathways that could be used to circumvent the defects.

    Strengths:

    What their data clearly demonstrate, is conceptually appealing, and in my opinion, the biggest contribution of the study is the ability of reverting a neurodevelopmental defect with a dietary intervention that acts upstream or in parallel to DAF-16/FOXO.

    Weaknesses:

    The model shows AKT-1 as an inhibitor of DAF-16, yet their studies show no differences from wildtype in akt-1 and akt-2 mutants. AKT is not a major protein studied in this paper, and it can be removed from the model to avoid confusion, or the result can be discussed in the context of the model to clarify interpretation.

    When testing additional genes in the DAF-18/FOXO pathway, there were no significant differences from wild type in most cases. This should be discussed. Could there be an alternate pathway via DAF-18/DAF-16, excluding the PI3K pathway or are there variations in activity of PI3K genes during a ketogenic diet that are hard to detect with current assays?

    The consequence of SOD-3 expression in the broader context of GABA neurons was not discussed. SOD-3 was also measured in the pharynx but measuring it in neurons would bolster the claims.

    If they want to include AKT-1, seeing its effect on SOD-3 expression could be meaningful to the model.