Development and biophysical characterization of a humanized FSH–blocking monoclonal antibody therapeutic formulated at an ultra-high concentration

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This development of a highly concentrated and potentially clinically valuable antibody formulation for MS-Hu6, a first-in-class FSH-blocking humanized antibody is of potential translational importance in the management of osteoporosis, obesity, and Alzheimer's disease. The meticulous methodology is thorough and compelling in its range of techniques examining the stability and physiochemical properties of the formulated MS-Hu6.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the development of a unique formulation for our first-in-class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer’s disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation’s long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, confirmed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) Spectroscopy. Three rapid freeze–thaw cycles at –80 °C/25 °C or –80 °C/37 °C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (T m ) for formulated MS-Hu6 increased by >4.80 °C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.

Article activity feed

  1. eLife assessment

    This development of a highly concentrated and potentially clinically valuable antibody formulation for MS-Hu6, a first-in-class FSH-blocking humanized antibody is of potential translational importance in the management of osteoporosis, obesity, and Alzheimer's disease. The meticulous methodology is thorough and compelling in its range of techniques examining the stability and physiochemical properties of the formulated MS-Hu6.

  2. Reviewer #1 (Public Reviews):

    The article describes the development of a highly concentrated antibody formulation for MS-Hu6, a first-in-class FSH-blocking humanized antibody proposed for clinical use in osteoporosis, obesity, and Alzheimer's disease. The authors utilized various techniques, including protein thermal shift, size exclusion chromatography, and dynamic light scattering, to examine the stability and physiochemical properties of the formulated MS-Hu6 at concentrations ranging from 1 to 100 mg/mL. They found that the thermal, monomeric, and colloidal stability of the formulated MS-Hu6 was maintained at a concentration of 100 mg/mL, and the addition of L-methionine and disodium EDTA improved its long-term colloidal and thermal stability. The authors further confirmed the thermal stability of the formulation through Nano differential scanning calorimetry (DSC). They demonstrated that MS-Hu6's structural integrity was maintained through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. The formulated MS-Hu6 displayed excellent thermal and colloidal stability even after three rapid freeze-thaw cycles and storage for more than 90 days at 4{degree sign}C and 25{degree sign}C. The authors concluded that they had developed a stable, manufacturable, and transportable MS-Hu6 formulation at an ultra-high concentration, meeting acceptable industry standards. The study's findings may serve as a resource for developing biologics formulation in academic medical centers.

  3. Reviewer #2 (Public Review):

    The field of monoclonal antibody therapeutics for the treatment of clinical diseases is undergoing rapid growth in recent years and becoming a dominant force in the therapeutics market. In previous studies, Mone Zaidi's group has reported the development of a first-of-its-kind humanized FSH-blocking antibody, MS-Hu6, based on the established importance of FSH in bone loss, adiposity, and neurodegeneration. This study reports the creation of a unique formulation of highly concentrated MS-HU6 preparation and evaluates detailed physiochemical properties of formulated MS-Hu6 including viscosity, turbidity, and clarity. Furthermore, the structural integrity of the formulated MS-HU6 is confirmed through Circular Dichroism and Fourier Transform Infrared (FTIR). The manuscript is succinctly written, and the methods and results are well described. The authors' conclusions are largely supported by the experimental data. The methods described are highly relevant to the goal of future manufacturing of highly concentrated monoclonal antibody therapeutics for human trials, and, therefore, the study is significant.