Natural xanthones as α-Mangostin induce vasorelaxation via binding to key gating residues in the S6 domain of BK channels

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    The present manuscript by Cordeiro et al., shows convincing evidence that α-mangostin, a xanthone obtained from the fruit of the Garcinia mangostana tree, behaves as a strong activator of the large-conductance (BK) potassium channels; macroscopic currents and single-channel experiments show that α-mangostin produces an increase in the probability of opening, without affecting the single-channel conductance. The authors put forward that α-mangostin activation of the BK channel is state-independent, and molecular docking and mutagenesis suggest that α-mangostin binds to a site in the internal cavity. Additionally, the authors show that α-mangostin can relax arteries, further suggesting the plausibility of the proposed effects of this compound. These are valuable findings that should be of interest to channel biophysicists and physiologists alike.

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Polyphenolic compounds are widely explored for health benefits, including hypertension, but their active ingredients, molecular targets, and mechanisms remain poorly defined. We identify the xanthone Mangostin from Garcinia mangostana as a potent modulator of several potassium channels, with large-conductance K+ (BK) channels as its primary target for vasorelaxation. Mangostin activated BK channels as α subunits alone, in complexes with vascular β1 subunits, and in reconstituted BKα/β1–Cav nanodomains. It shifted BK voltage activation to more negative potentials by antagonizing channel closure and promoting channel opening without markedly altering Ca2+ sensitivity. Docking, competition, single channel analysis and mutagenesis localized the binding site in the pore cavity below the SF, involving gating-critical S6 residues I308, L312, and A316, and suggest that Mangostin stays bound in closed and open states. These findings establish BK channel activation as the core molecular mechanism driving Mangostin’s vascular effects and define its structural mode of action, informing nutraceutical safety assessment and BK-targeted drug design.

Article activity feed

  1. eLife Assessment

    The present manuscript by Cordeiro et al., shows convincing evidence that α-mangostin, a xanthone obtained from the fruit of the Garcinia mangostana tree, behaves as a strong activator of the large-conductance (BK) potassium channels; macroscopic currents and single-channel experiments show that α-mangostin produces an increase in the probability of opening, without affecting the single-channel conductance. The authors put forward that α-mangostin activation of the BK channel is state-independent, and molecular docking and mutagenesis suggest that α-mangostin binds to a site in the internal cavity. Additionally, the authors show that α-mangostin can relax arteries, further suggesting the plausibility of the proposed effects of this compound. These are valuable findings that should be of interest to channel biophysicists and physiologists alike.

  2. Reviewer #1 (Public review):

    In this manuscript, the authors aimed to identify the molecular target and mechanism by which α-Mangostin, a xanthone from Garcinia mangostana, produces vasorelaxation that could explain the antihypertensive effects. Building on prior reports of vascular relaxation and ion channel modulation, the authors convincingly show that large-conductance potassium BK channels are the primary site of action. Using electrophysiological, pharmacological, and computational evidence, the authors achieved their aims and showed that BK channels are the critical molecular determinant of mangostin's vasodilatory effects, even though the vascular studies are quite preliminary in nature.

    Strengths:

    (1) The broad pharmacological profiling of mangostin across potassium channel families, revealing BK channels - and the vascular BK-alpha/beta1 complex - as the potently activated target in a concentration-dependent manner.

    (2) Detailed gating analyses showing large negative shifts in voltage-dependence of activation and altered activation and deactivation kinetics.

    (3) High-quality single-channel recordings for open probability and dwell times.

    (4) Convincing activation in reconstituted BKα/β1-Caᵥ nanodomains mimicking physiological conditions and functional proof-of-concept validation in mouse aortic rings.

    Weaknesses are minor:

    (1) Some mutagenesis data (e.g., partial loss at L312A) could benefit from complementary structural validation.

    (2) While Cav-BK nanodomains were reconstituted, direct measurement of calcium signals after mangostin application onto native smooth muscle could be valuable.

    (3) The work has an impact on ion channel physiology and pharmacology, providing a mechanistic link between a natural product and vasodilation. Datasets include electrophysiology traces, mutagenesis scans, docking analyses, and aortic tension recordings. The latter, however, are preliminary in nature.

  3. Reviewer #2 (Public review):

    Summary:

    In the present manuscript, Cordeiro et al. show that α-mangostin, a xanthone obtained from the fruit of the Garcinia mangostana tree, behaves as an agonist of the BK channels. The authors arrive at this conclusion through the effect of mangostin on macroscopic and single-channel currents elicited by BK channels formed by the α subunit and α + β1sununits, as well as αβ1 channels coexpressed with voltage-dependent Ca2+ (CaV1,2) channels. The single-channel experiments show that α-mangostin produces a robust increase in the probability of opening without affecting the single-channel conductance. The authors contend that α-mangostin activation of the BK channel is state-independent and molecular docking and mutagenesis suggest that α-mangostin binds to a site in the internal cavity. Importantly, α-mangostin (10 μM) alleviates the contracture promoted by noradrenaline. Mangostin is ineffective if the contracted muscles are pretreated with the BK toxin iberiotoxin.

    Strengths:

    The set of results combining electrophysiological measurements, mutagenesis, and molecular docking reveals α-mangostin as a potent activator of BK channels and the putative location of the α-mangostin binding site. Moreover, experiments conducted on aortic preparations from mice suggest that α-mangostin can aid in developing drugs to treat a myriad of diverse diseases involving the BK channel.

    Weaknesses:

    Major:

    (1) Although the results indicate that α-mangostin is modifying the closed-open equilibrium, the conclusion that this can be due to a stabilization of the voltage sensor in its active configuration may prove to be wrong. It is more probable that, as has been demonstrated for other activators, the α-mangostin is increasing the equilibrium constant that defines the closed-open reaction (L in the Horrigan, Aldrich allosteric gating model for BK). The paper will gain much if the authors determine the probability of opening in a wide range of voltages, to determine how the drug is affecting (or not), the channel voltage dependence, the coupling between the voltage sensor and the pore, and the closed-open equilibrium (L).

    (2) Apparently, the molecular docking was performed using the truncated structure of the human BK channel. However, it is unclear which one, since the PDB ID given in the Methods (6vg3), according to what I could find, corresponds to the unliganded, inactive PTK7 kinase domain. Be as it may, the apo and Ca2+ bound structures show that there is a rotation and a displacement of the S6 transmembrane domain. Therefore, the positions of the residues I308, L312, and A316 in the closed and open configurations of the BK channel are not the same. Hence, it is expected that the strength of binding will be different whether the channel is closed or open. This point needs to be discussed.

    Minor:

    (1) From Figure 3A, it is apparent that the increase in Po is at the expense of the long periods (seconds) that the channel remains closed. One might suggest that α-mangostin increases the burst periods. It would be beneficial if the authors measured both closed and open dwell times to test whether α-mangostin primarily affects the burst periods.

    (2) In several places, the authors make similarities in the mode of action of other BK activators and α-mangostin; however, the work of Gessner et al. PNAS 2012 indicates that NS1619 and Cym04 interact with the S6/RCK linker, and Webb et al. demonstrated that GoSlo-SR-5-6 agonist activity is abolished when residues in the S4/S5 linker and in the S6C region are mutated. These findings indicate that binding of the agonist is not near the selectivity filter, as the authors' results suggest that α-mangostin binds.

    (3) The sentence starting in line 452 states that there is a pronounced allosteric coupling between the voltage sensors and Ca2+ binding. If the authors are referring to the coupling factor E in the Horrigan-Aldrich gating model, the references cited, in particular, Sun and Horrigan, concluded that the coupling between those sensors is weak.

  4. Reviewer #3 (Public review):

    Summary:

    This research shows that a-mangostin, a proposed nutraceutical, with cardiovascular protective properties, could act through the activation of large conductance potassium permeable channels (BK). The authors provide convincing electrophysiological evidence that the compound binds to BK channels and induces a potent activation, increasing the magnitude of potassium currents. Since these channels are important modulators of the membrane potential of smooth muscle in vascular tissue, this activation leads to muscle relaxation, possibly explaining cardiovascular protective effects.

    Strengths:

    The authors present evidence based on several lines of experiments that a-mangostin is a potent activator of BK channels. The quality of the experiments and the analysis is high and represents an appropriate level of analysis. This research is timely and provides a basis to understand the physiological effects of natural compounds with proposed cardio-protective effects.

    Weaknesses:

    The identification of the binding site is not the strongest point of the manuscript. The authors show that the binding site is probably located in the hydrophobic cavity of the pore and show that point mutations reduce the magnitude of the negative voltage shift of activation produced by a-mangostin. However, these experiments do not demonstrate binding to these sites, and could be explained by allosteric effects on gating induced by the mutations themselves.

  5. Author response:

    We sincerely thank the reviewers and editors for their thoughtful evaluations of our work. We are grateful for the careful reading, constructive critiques, and encouraging comments regarding the electrophysiological analyses, mutagenesis, and vascular experiments. The suggestions provided have been very helpful, and we are working to address these points in our revision to strengthen the manuscript and improve its clarity.

    In revising the manuscript, we plan to clarify several text passages as recommended by the reviewers, and review and refine the discussion for improved precision. Following the suggestions of the reviewers, we plan to perform a number of additional experiments to provide more data for the binding region and for further mechanistic and physiological insight. We will prepare a point-by-point response addressing all issues raised in a detailed rebuttal. Additionally, we will include improvements in the Methods section as suggested by the SciScore core report.

    We appreciate the opportunity to revise our work and thank the reviewers again for their valuable feedback.