Unreliable homeostatic action potential broadening in cultured dissociated neurons

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This study provides compelling evidence that action potential (AP) broadening is not a universal feature of homeostatic plasticity in response to chronic activity deprivation. By leveraging state-of-the-art methods across multiple brain regions and laboratories, the authors demonstrate that AP half-width remains largely stable, challenging previous assumptions in the field. These important findings help resolve longstanding inconsistencies in the literature and significantly advance our understanding of neuronal network homeostasis.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Summary

Homeostatic plasticity preserves neuronal activity against perturbations. Recently, somatic action potential broadening was proposed as a key homeostatic adaptation to chronic inactivity in neocortical neurons. Since action potential shape critically controls calcium entry and neuronal function, broadening provides an attractive homeostatic feedback mechanism to regulate activity. Here, we report that chronic inactivity induced by sodium channel block does not broaden action potentials in neocortical neurons under a wide range of conditions. In contrast, action potentials were broadened in CA3 neurons of organotypic hippocampal cultures by chronic sodium channel block and in hippocampal dissociated cultures by chronic synaptic block. Mechanistically, BK-type potassium channels were proposed to underly inactivity-induced action potential broadening. However, BK channels did not affect action potential duration in our recordings. Our results indicate that action potential broadening can occur in specific neurons and conditions but is not a general mechanism of homeostatic plasticity in cultured neurons.

Article activity feed

  1. eLife Assessment

    This study provides compelling evidence that action potential (AP) broadening is not a universal feature of homeostatic plasticity in response to chronic activity deprivation. By leveraging state-of-the-art methods across multiple brain regions and laboratories, the authors demonstrate that AP half-width remains largely stable, challenging previous assumptions in the field. These important findings help resolve longstanding inconsistencies in the literature and significantly advance our understanding of neuronal network homeostasis.

  2. Reviewer #1 (Public review):

    Summary:

    Ritzau-Jost et al. investigate the potential contribution of AP broadening in homeostatic upregulation of neuronal network activity with a specific focus on dissociated neuronal cultures. In cultures obtained from a few brain regions from mice or rats using different culture conditions and examined by different laboratories, AP half-width remained stable despite chronic activity block with TTX. The finding suggests that AP width is not significantly modulated by changes in sodium channel activity.

    Strengths:

    The collaborative nature of the study amongst the neuronal culture experts and the rigorous electrophysiological assessments provides for a compelling support of the main conclusion.

    Weaknesses:

    Given the negative nature of the results, a couple of remaining issues (such as the cell density of cultures and the presentation of imaging experiments with a voltage sensor) warrant further consideration. In addition, a discussion of the reasons for the seeming stability of AP half-width to sodium channel modulation might help extend the scope of the study beyond the presentation of a negative conclusion.

  3. Reviewer #2 (Public review):

    Summary:

    This study reexamined the idea that action potential broadening serves as a homeostatic mechanism to compensate for changes in network activity. The key finding was that, while action potential broadening does occur in certain neurons - such as CA3 pyramidal cells-it is far from a universal response. This is important because it helps resolve longstanding discrepancies in the field, thereby contributing to a better understanding of network dynamics. The replication of these findings across multiple laboratories further strengthened the study's rigor.

    Strengths:

    Mechanisms of network homeostasis are essential to understand network dynamics.

    Weaknesses:

    No weaknesses were noted by this reviewer.

  4. Reviewer #3 (Public review):

    Summary:

    The manuscript "Unreliable homeostatic action potential broadening in cultured dissociated neurons" by Ritzau-Jost et al. investigates action potential (AP) broadening as a mechanism underlying homeostatic synaptic plasticity. Given the existing variability in the literature concerning AP broadening, the authors address an important and timely research question of considerable interest to the field.

    The study systematically demonstrates cell-type- and model-specific AP broadening in hippocampal neurons after chronic treatment with either tetrodotoxin (TTX) or glutamatergic transmission blockers. The findings indicate AP broadening in CA3 pyramidal neurons in organotypic cultures after TTX treatment, but notably not in dissociated hippocampal neurons under identical conditions. However, blocking glutamatergic neurotransmission caused AP broadening in dissociated hippocampal neurons. Moreover, extensive evaluations in neocortical dissociated cultures robustly challenge previous findings by revealing a lack of AP broadening following TTX treatment. Additionally, the proposed role of BK-type potassium channels in mediating AP broadening is convincingly questioned through complementary electrophysiological and voltage-imaging experiments.

    Strengths:

    The manuscript exhibits an outstanding experimental design, employing state-of-the-art techniques and a rigorous multi-lab validation approach that greatly enhances scientific reliability. The experimental results are meticulously illustrated, and the conclusions drawn are justified and supported by the presented data. Furthermore, the manuscript is comprehensively and clearly written.

    Weaknesses:

    Concerning the statistical analyses employed, it is advisable to consider the Kruskal-Wallis test with corrections for multiple comparisons when evaluating more than two experimental groups.