PRMT1-Mediated Metabolic Reprogramming Promotes Leukemogenesis

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This study reveals that PRMT1 overexpression drives tumorigenesis of acute megakaryocytic leukemia (AMKL) and that targeting PRMT1 is a viable approach for treating AMKL. While the evidence, based largely on one cell line, is convincing, further validations in additional experiment settings will solidify the conclusion. These findings have important implications for the treatment of AMKL with PRMT1 over expression in the future.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Copious expression of protein arginine methyltransferase 1 (PRMT1) is associated with poor survival in many types of cancers, including acute myeloid leukemia. We observed that a specific acute megakaryocytic leukemia (AMKL) cell line (6133) derived from RBM15-MKL1 knock-in mice exhibited heterogeneity in Prmt1 expression levels. Interestingly, only a subpopulation of 6133 cells expressing high levels of Prmt1 caused leukemia when transplanted into congenic mice. The PRMT1 inhibitor, MS023, effectively cured this PRMT1-driven leukemia. Seahorse analysis revealed that PRMT1 increased the extracellular acidification rate (ECAR) and decreased the oxygen consumption rate (OCR). Consistently, PRMT1 accelerated glucose consumption and led to the accumulation of lactic acid in the leukemia cells. The metabolomic analysis supported that PRMT1 stimulated the intracellular accumulation of lipids, which was further validated by FACS analysis with BODIPY 493/503. In line with fatty acid accumulation, PRMT1 downregulated the protein level of CPT1A, which is involved in the rate-limiting step of fatty acid oxidation. Furthermore, administering the glucose analogue 2-deoxy-glucose (2-DG) delayed AMKL progression and promoted cell differentiation. Ectopic expression of Cpt1a rescued the proliferation of 6133 cells ectopically expressing PRMT1 in the glucose-minus medium. In conclusion, PRMT1 upregulates glycolysis and downregulates fatty acid oxidation to enhance the proliferation capability of AMKL cells.

Article activity feed

  1. eLife Assessment

    This study reveals that PRMT1 overexpression drives tumorigenesis of acute megakaryocytic leukemia (AMKL) and that targeting PRMT1 is a viable approach for treating AMKL. While the evidence, based largely on one cell line, is convincing, further validations in additional experiment settings will solidify the conclusion. These findings have important implications for the treatment of AMKL with PRMT1 over expression in the future.

  2. Reviewer #1 (Public review):

    Summary:

    PRMT1 overexpression is linked to poor survival in cancers, including acute megakaryocytic leukemia (AMKL). This manuscript describes the important role of PRMT1 in the metabolic reprograming in AMKL. In a PRMT1-driven AMKL model, only cells with high PRMT1 expression induced leukemia, which was effectively treated with the PRMT1 inhibitor MS023. PRMT1 increased glycolysis, leading to elevated glucose consumption, lactic acid accumulation, and lipid buildup while downregulating CPT1A, a key regulator of fatty acid oxidation. Treatment with 2-deoxy-glucose (2-DG) delayed leukemia progression and induced cell differentiation, while CPT1A overexpression rescued cell proliferation under glucose deprivation. Thus, PRMT1 enhances AMKL cell proliferation by promoting glycolysis and suppressing fatty acid oxidation.

    Strengths:

    This study highlights the clinical relevance of PRMT1 overexpression with AMKL, identifying it as a promising therapeutic target. A key novel finding is the discovery that only AMKL cells with high PRMT1 expression drive leukemogenesis, and this PRMT1-driven leukemia can be effectively treated with the PRMT1 inhibitor MS023. The work provides significant metabolic insights, showing that PRMT1 enhances glycolysis, suppresses fatty acid oxidation, downregulates CPT1A, and promotes lipid accumulation, which collectively drive leukemia cell proliferation. The successful use of the glucose analogue 2-deoxy-glucose (2-DG) to delay AMKL progression and induce cell differentiation underscores the therapeutic potential of targeting PRMT1-related metabolic pathways. Furthermore, the rescue experiment with ectopic Cpt1a expression strengthens the mechanistic link between PRMT1 and metabolic reprogramming. The study employs robust methodologies, including Seahorse analysis, metabolomics, FACS analysis, and in vivo transplantation models, providing comprehensive and well-supported findings. Overall, this work not only deepens our understanding of PRMT1's role in leukemia progression but also opens new avenues for targeting metabolic pathways in cancer therapy.

    Weaknesses:

    This study, while significant, has some limitations.

    (1) The findings rely heavily on a single AMKL cell line, with no validation in patient-derived samples to confirm clinical relevance or even another type of leukemia line. Adding the discussion of PRMT1's role in other leukemia types will increase the impact of this work.

    (2) The observed heterogeneity in Prmt1 expression is noted but not further investigated, leaving gaps in understanding its broader implications.

    (3) Some figures and figure legends didn't include important details or had not matching information. For example,
    • Figure 2D, E, F, I (wrong label with D), p-value was not shown. Panel I figure legend is missing.
    • Figure 6E, F, p value was not shown.
    • Line 272-278, figures should be Figures 7 D-F.

    (4) Some wording is not accurate, such as line 80 "the elevated level of PRMT1 maintains the leukemic stem cells", the study is using the cell line, not leukemia stem cells.

    (5) In the disease model, histopathology of blood, spleen, and BM should be shown.

    (6) Can MS023 treatment reverse the metabolic changes in PRMT1 overexpression AMKL cells?

    (7) It would be helpful if a summary graph is provided at the end of the manuscript.

  3. Reviewer #2 (Public review):

    Summary:

    The manuscript explores the role of PRMT1 in AMKL, highlighting its overexpression as a driver of metabolic reprogramming. PRMT1 overexpression enhances the glycolytic phenotype and extracellular acidification by increasing lactate production in AMKL cells. Treatment with the PRMT1 inhibitor MS023 significantly reduces AMKL cell viability and improves survival in tumor-bearing mice. Intriguingly, PRMT1 overexpression also increases mitochondrial number and mtDNA content. High PRMT1-expressing cells demonstrate the ability to utilize alternative energy sources dependent on mitochondrial energetics, in contrast to parental cells with lower PRMT1 levels.

    Strengths:

    This is a conceptually novel and important finding as PRMT1 has never been shown to enhance glycolysis in AMKL, and provides a novel point of therapeutic intervention for AMKL.

    Weaknesses:

    (1) The manuscript lacks detailed molecular mechanisms underlying PRMT1 overexpression, particularly its role in enhancing survival and metabolic reprogramming via upregulated glycolysis and diminished oxidative phosphorylation (OxPhos). The findings primarily report phenomena without exploring the reasons behind these changes.

    (2) The article shows that PRMT1 overexpression leads to augmented glycolysis and low reliance on the OxPhos. However, the manuscript also shows that PMRT1 overexpression leads to increased mitochondrial number and mitochondrial DNA content and has an elevated NADPH/NAD+ ratio. Further, these overexpressing cells have the ability to better survive on alternative energy sources in the absence of glucose compared to low PMRT1-expressing parental cells. Surprisingly, the seashores assay in PRMT1 overexpressing cells showed no further enhancement in the ECAR after adding mitochondrial decoupler FCCP, indicating the truncated mitochondrial energetics. These results are contradicting and need a more detailed explanation in the discussion.

    (3) How was disease penetrance established following the 6133/PRMT1 transplant before MS023 treatment?

    (4) The 6133/PRMT1 cells show elevated glycolysis compared to parental 6133; why did the author choose the 6133 cells for treatment with the MS023 and ECAR assay (Fig.3 b)? The same is confusing with OCR after inhibitor treatment in 6133 cells; the figure legend and results section description are inconsistent.

    (5) The discussion is too brief and incoherent and does not adequately address key findings. A comprehensive rewrite is necessary to improve coherence and depth.

    (6) The materials and methods section lacks a description of statistical analysis, and significance is not indicated in several figures (e.g., Figures 1C, D, F; Figures 2D, E, F, I). Statistical significance must be consistently indicated. The methods section requires more detailed descriptions to enable replication of the study's findings.

    (7) Figures are hazy and unclear. They should be replaced with high-resolution images, ensuring legible text and data.

    (8) Correct the labeling in Figure 2I by removing the redundant "D."