Tumor cell-specific loss of GPX4 reprograms triacylglycerol metabolism to escape ferroptosis and impair antitumor immunity in NSCLC

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Glutathione peroxidase 4 (GPX4) is a master regulator of ferroptosis, a process that has been proposed as a potential therapeutic strategy for cancer. Here we have unexpectedly found that inducible knockout of GPX4 in tumor cells significantly promotes non-small cell lung cancer (NSCLC) progression in the autochthonous Kras LSL-G12D/+ Lkb1 fl/fl (KL) and Kras LSL-G12D/+ Tp53 fl/fl (KP) mouse models, whereas inducible overexpression of GPX4 in tumor cells exerts the opposite effect. GPX4-deficient tumor cells evade ferroptosis by upregulating the expression of DGAT1/2 to promote the synthesis of triacylglycerol (TAG) and oxidized TAG (oxTAG) and the formation of lipid droplets in cells. In addition, GPX4-deficient tumor cells secrete TAG and oxTAG into the extracellular space to induce dysfunction of antitumor CD8 + T cells, thereby coordinating an immunoinhibitory tumor microenvironment (TME). Consistently, treatment with DGAT1/2 inhibitors or inducible overexpression of GPX4 in tumor cells significantly resensitizes tumor cells to ferroptosis and ignites the activation of T cells in the TME to inhibit NSCLC progression. These findings highlight a previously uncharacterized role of tumor cell-specific GPX4 in NSCLC progression and provide potential therapeutic strategies for NSCLC.

Article activity feed