The flexible stalk domain of sTREM2 modulates its interactions with phospholipids in the brain

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This useful manuscript addresses some key molecular mechanisms on the neuroprotective roles of soluble TREM2 in neurodegenerative diseases. Thw study will advance our understanding of TREM2 mutations, particularly on the damaging effect of known TREM2 mutations, and also explain why soluble TREM2 can antagonize Aβ aggregation. However, the primary experimental method, MD simulations, suffers from limited sampling, rendering the results incomplete for definite conclusions.

This article has been Reviewed by the following groups

Read the full article

Abstract

The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer’s disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained. To address these knowledge gaps, we conducted the most computationally intensive molecular dynamics simulations to date of (s)TREM2, exploring their interactions with key damage- and lipoprotein-associated phospholipids and the impact of the AD-risk mutation R47H. Our results demonstrate that the flexible stalk domain of sTREM2 serves as the molecular basis for differential ligand binding between sTREM2 and TREM2, facilitated by its role in stabilizing the Ig-like domain and altering the accessibility of canonical ligand binding sites. We identified a novel ligand binding site on sTREM2, termed the ‘Expanded Surface 2’, which emerges due to competitive binding of the stalk with the Ig-like domain. Additionally, we observed that the stalk domain itself functions as a site for ligand binding, with increased binding in the presence of R47H. This suggests that sTREM2’s neuroprotective role in AD may, at least in part, arise from the stalk domain’s ability to rescue dysfunctional ligand binding caused by AD-risk mutations. Lastly, our findings indicate that R47H-induced dysfunction in membrane-bound TREM2 may result from both diminished ligand binding due to restricted complementarity-determining region 2 loop motions and an impaired ability to differentiate between ligands, proposing a novel mechanism for loss-of-function. In summary, these results provide valuable insights into the role of sTREM2 in AD pathology, laying the groundwork for the design of new therapeutic approaches targeting (s)TREM2 in AD.

Article activity feed

  1. Author response:

    Review #1:

    Also, they observed no difference in the binding free energy of phosphatidylserine with wild TREM2-Ig and mutant TREM2-Ig, which is a bit inconsistent with the previous report with experiment studies by Journal of Biological Chemistry 293, (2018), Alzheimer's and Dementia 17, 475-488 (2021), Cell 160, 1061-1071 (2015).

    We directly note this contrast with experimental findings in the body of our work, particularly given the known limitations of free energy calculations in MD simulations, as outlined in the Limitations section. Our claim is that the loss of function in the R47H variant extends beyond decreased binding affinities and also impacts binding patterns. As stated in our manuscript: ‘Our observations for both sTREM2 and TREM2 indicate that R47H-induced dysfunction may result not only from diminished ligand binding but also an impaired ability to discriminate between different ligands in the brain, proposing a novel mechanism for loss-of-function.’

    Perhaps the authors made significant efforts to run a number of simulations for multiple models, which is nearly 17 microseconds in total; none of the simulations has been repeated independently at least a couple of times, which makes me uncomfortable to consider this finding technically true. Most of the important conclusions that authors claimed, including the opposite results from previous research, have been made on the single run, which raises the question of whether this observation can be reproduced if the simulation has been repeated independently. Although the authors stated the sampling number and length of MD simulations in the current manuscript as a limitation of this study, it must be carefully considered before concluding rather than based on a single run.

    The reviewer raises an interesting point regarding the repetition of individual simulations, a consideration we carefully evaluated during the design of this study. However, we believe our approach—running multiple independent models of the same system—offers a more rigorous methodology than simply repeating simulations of the same docked model. This strategy allows us to sample several distinct starting configurations, thereby minimizing biases introduced by docking algorithms and single-model reliance.

    In our study, we demonstrate that within the 150 ns timescale of our protein/ligand (PL) simulations, the relatively small ligands are able to move from their initial docking positions to a specific binding site. While ideally, replicates of these independent models would further strengthen the findings, this was not computationally feasible given the unprecedented total duration of our simulations. Importantly, our conclusions are seldom based on the results of a single protein/PL simulation.

    Moreover, the ergodic hypothesis suggests that over sufficiently long timescales, simulations will explore all accessible states. Additionally, we have performed several replicate simulations of our WT and R47H Ig-like domain models in solution, specifically to investigate CDR2 loop dynamics.

    In this case, since the system involves only the protein and lacks the independent replicates seen in the protein/PL simulations, these runs were chosen to effectively capture the stochastic nature of CDR2 loop movement.

    sTREM2 shows a neuroprotective effect in AD, even with the mutations with R47H, as evidenced by authors based on their simulation. sTREM2 is known to bind Aβ within the AD and reduce Aβ aggregation, whereas R47H mutant increases Aβ aggregation. I wonder why the authors did not consider Aβ as a ligand for their simulation studies. As a reader in this field, I would prefer to know the protective mechanism of sTREM2 in Aβ aggregation influenced by the stalk domain.

    Our initial approach for this study used Aβ as a ligand rather than phospholipids. However, we noted the difficulties in simulating Aβ, particularly in choosing relevant Aβ structures and oligomeric states (n-mers). We believe that phospholipids represent an equally pertinent ligand for TREM2, given its critical role in lipid sensing and metabolism. Furthermore, there is growing recognition in the AD research community of the need to move beyond Aβ and focus on other understudied pathological mechanisms.

    In a similar manner, why only one mutation is considered "R47H" for the study? There are more server mutations reported to disrupt tethering between these CDRs, such as T66M. Although this "T66M" is not associated with AD, I guess the stalk domain protective mechanism would not be biased among different diseases. Therefore, it would be interesting to see whether the findings are true for this T66M.

    In most previous studies, the mechanism for CDR destabilization by mutant was explored, like the change of secondary structures and residue-wise interloop interaction pattern. While this is not considered in this manuscript, neither detailed residue-wise interaction that changed by mutant or important for 'ligand binding" or "stalk domain".

    These are both excellent points that deserve extensive investigation. While R47H is the most common and prolific mutation in literature, an extensive catalog of other mutations is important to explore. We are currently preparing two separate publications that will delve into these gaps in more detail, as addressing them was beyond the scope of the present study.

    The comparison between the wild and mutant and other different complex structures must be determined by particular statistical calculations to state the observed difference between different structures is significant. Since autocorrelation is one of the major concerns for MD simulation data for predicting statistical differences, authors can consider bootstrap calculations for predicting statistical significance.

    We are currently working to address this comment to strengthen the validity of our results and statistical conclusions in the revised manuscript.

    Review #2:

    The authors state that reported differences in ligand binding between the TREM2 and sTREM2 remain unexplained, and the authors cite two lines of evidence. The first line of evidence, which is true, is that there are differences between lipid binding assays and lipid signaling assays. However, signaling assays do not directly measure binding. Secondly, the authors cite Kober et al 2021 as evidence that sTREM2 and TREM2 showed different affinities for Abeta1-42 in a direct binding assay. Unfortunately, when Kober et al measured the binding of sTREM2 and Ig-TREM2 to Abeta they reported statistically identical affinities (Kd = 3.8 {plus minus} 2.9 µM vs 5.1 {plus minus} 3.7 µM) and concluded that the stalk did not contribute measurably to Abeta binding.

    We appreciate the reviewer’s insight and acknowledge the need to clarify our interpretation of Kober et al. (2021). We will adjust and refocus how we reference this evidence from Kober et al. in our revised manuscript.

    In line with these findings, our energy calculations reveal that sTREM2 exhibits weaker—but still not statistically significant—binding affinities for phospholipids compared to TREM2. These results suggest that while overall binding affinity might be similar, differences in binding patterns or specific lipid interactions could still contribute to functional differences observed between TREM2 and sTREM2.

    The authors appear to take simulations of the Ig domain (without any stalk) as a surrogate for the full-length, membrane-bound TREM2. They compare the Ig domain to a sTREM2 model that includes the stalk. While it is fully plausible that the stalk could interact with and stabilize the Ig domain, the authors need to demonstrate why the full-length TREM2 could not interact with its own stalk and why the isolated Ig domain is a suitable surrogate for this state.

    We believe that this is a major limitation of all computational work of TREM2 to-date, and of experimental work which only presents the Ig-like domain. This is extensively discussed in the limitations section of our paper. Hence, we are currently working toward a manuscript that will be the first biologically relevant model of TREM2 in a membrane and will challenge the current paradigm of using the Ig-like domain as an experimental surrogate for TREM2.

  2. eLife Assessment

    This useful manuscript addresses some key molecular mechanisms on the neuroprotective roles of soluble TREM2 in neurodegenerative diseases. Thw study will advance our understanding of TREM2 mutations, particularly on the damaging effect of known TREM2 mutations, and also explain why soluble TREM2 can antagonize Aβ aggregation. However, the primary experimental method, MD simulations, suffers from limited sampling, rendering the results incomplete for definite conclusions.

  3. Reviewer #1 (Public review):

    In this manuscript, Saeb et al reported the mechanistic roles of the flexible stalk domain in sTREM2 function using molecular dynamics simulations. They have reported some interesting molecular bases explaining why sTREM2 shows protective effects during AD, such as partial extracellular stalk domain promoting binding preference and stabilities of sTREM2 with its ligand even in the presence of known AD-risk mutation, R47H. Furthermore, they found that the stalk domain itself acts as the site for ligand binding by providing an "expanded surface", known as 'Expanded Surface 2' together with the Ig-like domain. Also, they observed no difference in the binding free energy of phosphatidyl-serine with wild TREM2-Ig and mutant TREM2-Ig, which is a bit inconsistent with the previous report with experiment studies by Journal of Biological Chemistry 293, (2018), Alzheimer's and Dementia 17, 475-488 (2021), Cell 160, 1061-1071 (2015).

    Perhaps the authors made significant efforts to run a number of simulations for multiple models, which is nearly 17 microseconds in total; none of the simulations has been repeated independently at least a couple of times, which makes me uncomfortable to consider this finding technically true. Most of the important conclusions that authors claimed, including the opposite results from previous research, have been made on the single run, which raises the question of whether this observation can be reproduced if the simulation has been repeated independently. Although the authors stated the sampling number and length of MD simulations in the current manuscript as a limitation of this study, it must be carefully considered before concluding rather than based on a single run.

    sTREM2 shows a neuroprotective effect in AD, even with the mutations with R47H, as evidenced by authors based on their simulation. sTREM2 is known to bind Aβ within the AD and reduce Aβ aggregation, whereas R47H mutant increases Aβ aggregation. I wonder why the authors did not consider Aβ as a ligand for their simulation studies. As a reader in this field, I would prefer to know the protective mechanism of sTREM2 in Aβ aggregation influenced by the stalk domain.

    In a similar manner, why only one mutation is considered "R47H" for the study? There are more server mutations reported to disrupt tethering between these CDRs, such as T66M. Although this "T66M" is not associated with AD, I guess the stalk domain protective mechanism would not be biased among different diseases. Therefore, it would be interesting to see whether the findings are true for this T66M.

    In most previous studies, the mechanism for CDR destabilization by mutant was explored, like the change of secondary structures and residue-wise interloop interaction pattern. While this is not considered in this manuscript, neither detailed residue-wise interaction that changed by mutant or important for 'ligand binding" or "stalk domain".

    The comparison between the wild and mutant and other different complex structures must be determined by particular statistical calculations to state the observed difference between different structures is significant. Since autocorrelation is one of the major concerns for MD simulation data for predicting statistical differences, authors can consider bootstrap calculations for predicting statistical significance.

  4. Reviewer #2 (Public review):

    Significance:

    TREM2 is an immunomodulatory receptor expressed on myeloid cells and microglia in the brain. TREM2 consists of a single immunoglobular (Ig) domain that leads into a flexible stalk, transmembrane helix, and short cytoplasmic tail. Extracellular proteases can cleave TREM2 in its stalk and produce a soluble TREM2 (sTREM2). TREM2 is genetically linked to Alzheimer's disease (AD), with the strongest association coming from an R47H variant in the Ig domain. Despite intense interest, the full TREM2 ligand repertoire remains elusive, and it is unclear what function sTREM2 may play in the brain. The central goal of this paper is to assess the ligand-binding role of the flexible stalk that is generated during the shedding of TREM2. To do this, the authors simulate the behavior of constructs with and without stalk. However, it is not clear why the authors chose to use the isolated Ig domain as a surrogate for full-length TREM2. Additionally, experimental binding evidence that is misrepresented by the authors contradicts the proposed role of the stalk.

    Summary and strengths:

    The authors carry out MD simulations of WT and R47H TREM2 with and without the flexible stalk. Simulations are carried out for apo TREM2 and for TREM2 in complex with various lipids. They compare results using just the Ig domain to results including the flexible stalk that is retained following cleavage to generate sTREM2. The computational methods are well-described and should be reproducible. The long simulations are a strength, as exemplified in Figure 2A where a CDR2 transition happens at ~400-600 ns. The stalk has not been resolved in structural studies, but the simulations suggest the intriguing and readily testable hypothesis that the stalk interacts with the Ig domain and thereby contributes to the stability of the Ig domain and to ligand binding. I suspect biochemists interested in TREM2 will make testing this hypothesis a high priority.

    Weaknesses:

    Unfortunately, the work suffers from two fundamental flaws.

    (1) The authors state that reported differences in ligand binding between the TREM2 and sTREM2 remain unexplained, and the authors cite two lines of evidence. The first line of evidence, which is true, is that there are differences between lipid binding assays and lipid signaling assays. However, signaling assays do not directly measure binding. Secondly, the authors cite Kober et al 2021 as evidence that sTREM2 and TREM2 showed different affinities for Abeta1-42 in a direct binding assay. Unfortunately, when Kober et al measured the binding of sTREM2 and Ig-TREM2 to Abeta they reported statistically identical affinities (Kd = 3.8 {plus minus} 2.9 µM vs 5.1 {plus minus} 3.7 µM) and concluded that the stalk did not contribute measurably to Abeta binding.

    (2) The authors appear to take simulations of the Ig domain (without any stalk) as a surrogate for the full-length, membrane-bound TREM2. They compare the Ig domain to a sTREM2 model that includes the stalk. While it is fully plausible that the stalk could interact with and stabilize the Ig domain, the authors need to demonstrate why the full-length TREM2 could not interact with its own stalk and why the isolated Ig domain is a suitable surrogate for this state.