Overexpression of Ssd1 and calorie restriction extend yeast replicative lifespan by preventing deleterious age-dependent iron uptake

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This important study uses innovative microfluidics-based single-cell imaging to monitor replicative lifespan, protein localization, and intracellular iron levels in aging yeast cells. The evidence for the proposed role of Ssd1 and reduced nutrients for lifespan through limiting iron uptake is convincing, even though some mechanistic details remain unclear. This work will be of interest to cell biologists working on aging and iron metabolism.

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Abstract

Overexpression of the mRNA binding protein Ssd1 extends the yeast replicative lifespan. Using microfluidics to trap and image single cells throughout their lifespans, we find that lifespan extension by Ssd1 overexpression is accompanied by formation of cytoplasmic Ssd1 foci. The age-dependent Ssd1 foci are condensates that appear dynamically in a cell cycle-dependent manner and their failure to resolve during mitosis coincided with the end of lifespan. Ssd1 overexpression was epistatic with calorie restriction (CR) for lifespan extension and yeast overexpressing Ssd1 or undergoing CR were resistant to iron supplementation-induced lifespan shortening while their lifespans were reduced by iron chelation. The nuclear translocation of the Aft1 transcriptional regulator of the iron regulon occurred during aging in a manner that predicted remaining lifespan, but was prevented by CR. Accordingly, age-dependent induction of the Fit2 and Arn1 high-affinity iron transporters within the iron regulon was reduced by CR and Ssd1 overexpression. Consistent with age-dependent activation of the iron regulon, intracellular iron accumulated during aging but was prevented by CR and Ssd1 overexpression. Moreover, lifespan extension by Ssd1 overexpression or CR was epistatic to inactivation of the iron regulon. These studies reveal that CR and Ssd1 overexpression extend the yeast replicative lifespan by blocking deleterious age-dependent iron uptake, identifying novel therapeutic targets for lifespan extension.

Article activity feed

  1. eLife Assessment

    This important study uses innovative microfluidics-based single-cell imaging to monitor replicative lifespan, protein localization, and intracellular iron levels in aging yeast cells. The evidence for the proposed role of Ssd1 and reduced nutrients for lifespan through limiting iron uptake is convincing, even though some mechanistic details remain unclear. This work will be of interest to cell biologists working on aging and iron metabolism.

  2. Reviewer #1 (Public review):

    Summary:

    Overexpression of the mRNA-binding protein Ssd1 was shown before to expand the replicative lifespan of yeast cells, whereas ssd1 deletion had the opposite effect. Here, the authors provide evidence that Ssd1 acts via sequestration of mRNAs of the Aft1/2-dependent iron regulon. This restricts activation of the regulon and limits accumulation of Fe2+ inside cells, thereby likely lowering oxidative damage. The effects of Ssd1 overexpression and calorie restriction on lifespan are epistatic, suggesting that they might act through the same pathway.

    Strengths:

    The study is well-designed and involves analysis of single yeast cells during replicative aging. The findings are well displayed and largely support the derived model, which also has implications for the lifespan of other organisms, including humans.

    Weaknesses:

    The model is largely supported by the findings, however, they remain largely correlative at the same time. Whether the knockout of ssd1 shortens lifespan by increased intracellular Fe2+ levels has not been tested. The finding that increased Ssd1 levels form condensates in a cell-cycle-dependent manner is interesting, yet the role of the condensates in lifespan expansion remains untested and unlinked.

  3. Reviewer #2 (Public review):

    This manuscript describes the use of a powerful technique called microfluidics to elucidate the mechanisms explaining how overexpression (OE) of Ssd1 and caloric restriction (CR) in yeast extend replicative lifespan (RLS). Microfluidics measures RLS by trapping cells in chambers mounted to a slide. The chambers hold the mother cell but allow daughters to escape. The slide, with many chambers, is recorded during the entire process, roughly 72 hours, with the video monitored afterwards to count how many daughters each of the trapped mothers produces. The power of the method is what can be done with it. For example, the entire process can be viewed by fluorescence so that GFP and mCherry-tagged proteins can be followed as cells age. The budding yeast is the only model where bona fide replicative aging can be measured, and microfluidics is the only system that allows protein localization and levels to be measured in a single cell while aging. The authors do a wonderful job of showing what this combination of tools can do.

    The authors had previously shown that Ssd1, an mRNA-binding protein, extends RLS when overexpressed. This was attributed to Ssd1 sequestering away specific mRNAs under stress, likely leading to reduced ribosomal function. It remained completely unknown how Ssd1 OE extended RLS. The authors observed that overexpressed, but not normally expressed, Ssd1 formed cytoplasmic condensates during mitosis that are resolved by cytokinesis. When the condensates fail to be resolved at the end of mitosis, this signals death.

    It has become clear in the literature that iron accumulation increases with age within the cell. The transcriptional programs that activate the iron regulon also become elevated in aging cells. This is thought to be due to impaired mitochondrial function in aging cells, with increased iron accumulation as an attempt at restoring mitochondrial activity. The authors show that Ssd1 OE and CR both reduce the expression of the iron regulon. The data presented indicate that iron accumulation shortens RLS: deletion of iron regulon components extends RLS, and adding iron to WT cells decreases RLS, but not when Ssd1 is overexpressed or when cells are calorically restricted. Interestingly, iron chelation using BPS has no impact on WT RLS, but decreases the elevated RLS in CR cells and cells overexpressing Ssd1. It was not initially clear why iron chelation would inhibit the extended lifespan seen with CR and Ssd1 OE. This was addressed by an experiment where it was shown that the iron regulon is induced (FIT2 induction) when iron is chelated. Thus, the detrimental effects of induction of the iron regulon by BPS and iron accumulation on RLS cannot be tempered by Ssd1 OE and CR once turned on.

    I did not find any weaknesses to be addressed in this paper. The draft was well-written, and the extensive experimentation was well-designed, performed, and controlled. However, I did make minor comments that I recommend the authors address:

    (1) Why would BPS not reduce RLS in WT cells? The authors could test whether OE of FIT2 reduces RLS in WT cells.

    (2) The authors should add a brief explanation for why the GDP1 promoter was chosen for Ssd1 OE.

    (3) On page 12, growth to saturation was described as glucose starvation. This is more accurately described as nutrient deprivation. Referring to it as glucose starvation is akin to CR, which growing to saturation is not. Ssd1 OE formed condensates upon saturation but not in CR. Why do the authors think Ssd1 OE did not form condensates upon CR? Too mild a stress?

    (4) The authors conclude that the main mechanism for RLS extension in CR and Ssd1 OE is the inhibition of the iron regulon in aging cells. The data certainly supports this. However, this may be an overstatement as other mutations block CR, such as mutations that impair respiration. The authors do note that induction of the iron regulon in aging cells could be a response to impaired mitochondrial function. Thus, it seems that the main goal of CR and Ssd1 OE may be to restore mitochondrial function in aging cells, one way being inactivation of the iron regulon. A discussion of how other mutations impact CR would be of benefit.

    (5) The cell cycle regulation of Ssd1 OE condensates is very interesting. There does not appear to be literature linking Ssd1 with proteasome-dependent protein turnover. Many proteins involved in cell cycle regulation and genome stability are regulated through ubiquitination. It is not necessary to do anything here about it, but it would be interesting to address how Ssd1 condensates may be regulated with such precision.

    (6) While reading the draft, I kept asking myself what the relevance to human biology was. I was very impressed with the extensive literature review at the end of the discussion, going over how well conserved this strategy is in yeast with humans. I suggest referring to this earlier, perhaps even in the abstract. This would nail down how relevant this model is for understanding human longevity regulation.

    In conclusion, I enjoyed reading this manuscript, describing how Ssd1 OE and CR lead to RLS increases, using different mechanisms. However, since the 2 strategies appear to be using redundant mechanisms, I was surprised that synergism was not observed.

  4. Reviewer #3 (Public review):

    In this paper, the authors investigate how the RNA-binding protein Ssd1 and calorie restriction (CR) influence yeast replicative lifespan, with a particular focus on age-dependent iron uptake and activation of the iron regulon. For this, they use microfluidics-based single-cell imaging to monitor replicative lifespan, protein localization, and intracellular iron levels across aging cells. They show that both Ssd1 overexpression and CR act through a shared pathway to prevent the nuclear translocation of the iron-regulon regulator Aft1 and the subsequent induction of high-affinity iron transporters. As a result, these interventions block the age-related accumulation of intracellular free iron, which otherwise shortens lifespan. Genetic and chemical epistasis experiments further demonstrate that suppression of iron regulon activation is the key mechanism by which Ssd1 and CR promote replicative longevity.

    Overall, the paper is technically rigorous, and the main conclusions are supported by a substantial body of experimental data. The microfluidics-based assays in particular provide compelling single-cell evidence for the dynamics of Ssd1 condensates and iron homeostasis.

    My main concern, however, is that the central reasoning of the paper-that Ssd1 overexpression and CR prevent the activation of the iron regulon-appears to be contradicted by previous findings, and the authors may actually be misrepresenting these studies, unless I am mistaken. In the manuscript, the authors state on two occasions:

    "Intriguingly, transcripts that had altered abundance in CR vs control media and in SSD1 vs ssd1∆ yeast included the FIT1, FIT2, FIT3, and ARN1 genes of the iron regulon (8)"

    "Ssd1 and CR both reduce the levels of mRNAs of genes within the iron regulon: FIT1, FIT2, FIT3 and ARN1 (8)"

    However, reference (8) by Kaeberlein et al. actually says the opposite:

    "Using RNA derived from three independent experiments, a total of 97 genes were observed to undergo a change in expression >1.5-fold in SSD1-V cells relative to ssd1-d cells (supplemental Table 1 at http://www.genetics.org/supplemental/). Of these 97 genes, only 6 underwent similar transcriptional changes in calorically restricted cells (Table 2). This is only slightly greater than the number of genes expected to overlap between the SSD1-V and CR datasets by chance and is in contrast to the highly significant overlap in transcriptional changes observed between CR and HAP4 overexpression (Lin et al. 2002) or between CR and high external osmolarity (Kaeberlein et al. 2002). Intriguingly, of the 6 genes that show similar transcriptional changes in calorically restricted cells and SSD1-V cells, 4 are involved in iron-siderochrome transport: FIT1, FIT2, FIT3, and ARN1 (supplemental Table 1 at http://www.genetics.org/supplemental/)."

    Although the phrasing might be ambiguous at first reading, this interpretation is confirmed upon reviewing Matt Kaeberlein's PhD thesis: https://dspace.mit.edu/handle/1721.1/8318 (page 264 and so on).

    Moreover, consistent with this, activation of the iron regulon during calorie restriction (or the diauxic shift) has also been observed in two other articles:

    https://doi.org/10.1016/S1016-8478(23)13999-9

    https://doi.org/10.1074/jbc.M307447200

    Taken together, these contradictory data might blur the proposed model and make it unclear how to reconcile the results.