LIPT1 loss confers replication stress and PARP inhibitor sensitivity through PrimPol-mediated ssDNA gaps
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Replication stress (RS) and altered metabolism are two hallmarks of cancer, yet how metabolic perturbations contribute to RS remains poorly understood. Lipotransferase 1 (LIPT1) catalyzes the covalent attachment of lipoic acid to mitochondrial 2-ketoacid dehydrogenases, sustaining flux through the tricarboxylic acid (TCA) cycle. Loss of LIPT1 causes accumulation of 2-hydroxyglutarate (2-HG), which is known to inhibit α-ketoglutarate (α-KG)–dependent histone demethylases and promotes heterochromatin formation. Here, we show that 2-HG–driven heterochromatin impedes replication fork progression, causing fork stalling and RS in LIPT1-deficient cancer cells. To bypass stalled forks, PrimPol-mediated repriming resumes DNA synthesis but leaves behind single-stranded DNA (ssDNA), which requires poly (ADP-ribose) polymerase 1 (PARP1) for repair. Furthermore, nascent DNA at reprimed forks undergoes MRE11-dependent degradation, further destabilizing replication fork integrity. Consequently, LIPT1 deficiency promotes replication and genome instability, and therapeutic vulnerability to PARP inhibitor. Together, these findings reveal a mechanistic link between mitochondrial lipoylation and replication fork stability, uncovering a metabolic basis for genome instability in cancer.