Base editing of Ptbp1 in neurons alleviates symptoms in a mouse model for Parkinson’s disease

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Parkinson’s disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons. Recent studies reported successful conversion of astrocytes into dopaminergic neurons by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to a rescue of motor symptoms in a mouse model for PD. However, the mechanisms underlying this cell type conversion remain underexplored and controversial. Here, we devised a strategy using adenine base editing to effectively knockdown PTBP1 in astrocytes and neurons in a PD mouse model. Using AAV delivery vectors at a dose of 2×10 8 vg per animal, we found that Ptbp1 editing in neurons, but not astrocytes, of the substantia nigra pars compacta and striatum resulted in the formation of tyrosine hydroxylase (TH) + cells and the rescue of forelimb akinesia and spontaneous rotations. Phenotypic analysis of TH + cells indicates that they originated from non-dividing neurons and acquired dopaminergic neuronal markers upon PTBP1 downregulation. While further research is required to fully understand the origin, identity, and function of these newly generated TH + cells, our study reveals that the downregulation of PTBP1 can reprogram neurons to mitigate symptoms in PD mice.

Article activity feed