The evolutionary history of the ancient weevil family Belidae (Coleoptera: Curculionoidea) reveals the marks of Gondwana breakup and major floristic turnovers, including the rise of angiosperms

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    Using anchored phylogenomic analyses, this valuable study sheds new light on the evolutionary history of the plant diet of Belidae weevil beetles and their geographic distribution. Using convincing methodological approaches, the authors suggest a continuous association of certain belid lineages with Araucaria hosts, since the Mesozoic era. While the biogeographical analysis has weaknesses due to uncertainties in vicariance explanations, the study overall offers contributions to understanding the evolutionary dynamics of Belidae and provides novel insights into ancient community ecology.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The rise of angiosperms to ecological dominance and the breakup of Gondwana during the Mesozoic marked major transitions in the evolutionary history of insect-plant interactions. To elucidate how contemporary trophic interactions were influenced by host plant shifts and palaeogeographical events, we integrated molecular data with information from the fossil record to construct a timetree for ancient phytophagous weevils of the beetle family Belidae. Our analyses indicate that crown-group Belidae originated approximately 138 Ma ago in Gondwana, associated with Pinopsida (conifer) host plants, with larvae likely developing in dead/decaying branches. Belids tracked their host plants as major plate movements occurred during Gondwana’s breakup, surviving on distant, disjunct landmasses. Some belids shifted to Angiospermae and Cycadopsida when and where conifers declined, evolving new trophic interactions, including brood-pollination mutualisms with cycads and associations with achlorophyllous parasitic angiosperms. Extant radiations of belids in the genera Rhinotia (Australian region) and Proterhinus (Hawaiian Islands) have relatively recent temporal origins.

Article activity feed

  1. eLife assessment

    Using anchored phylogenomic analyses, this valuable study sheds new light on the evolutionary history of the plant diet of Belidae weevil beetles and their geographic distribution. Using convincing methodological approaches, the authors suggest a continuous association of certain belid lineages with Araucaria hosts, since the Mesozoic era. While the biogeographical analysis has weaknesses due to uncertainties in vicariance explanations, the study overall offers contributions to understanding the evolutionary dynamics of Belidae and provides novel insights into ancient community ecology.

  2. Reviewer #1 (Public Review):

    This is a very nice study of Belidae weevils using anchored phylogenomics that presents a new backbone for the family and explores, despite a limited taxon sampling, several evolutionary aspects of the group. The phylogeny is useful to understand the relationships between major lineages in this group and preliminary estimation of ancestral traits reveals interesting patterns linked to host-plant diet and geographic range evolution. I find that the methodology is appropriate, and all analytical steps are well presented. The paper is well-written and presents interesting aspects of Belidae systematics and evolution. The major weakness of the study is the very limited taxon sampling which has deep implications for the discussion of ancestral estimations.

  3. Reviewer #2 (Public Review):

    Summary:

    The authors used a combination of anchored hybrid enrichment and Sanger sequencing to construct a phylogenomic data set for the weevil family Belidae. Using evidence from fossils and previous studies they can estimate a phylogenetic tree with a range of dates for each node - a time tree. They use this to reconstruct the history of the belids' geographic distributions and associations with their host plants. They infer that the belids' association with conifers pre-dates the rise of the angiosperms. They offer an interpretation of belid history in terms of the breakup of Gondwanaland but acknowledge that they cannot rule out alternative interpretations that invoke dispersal.

    Strengths:

    The strength of any molecular-phylogenetic study hinges on four things: the extent of the sampling of taxa; the extent of the sampling of loci (DNA sequences) per genome; the quality of the analysis; and - most subjectively - the importance and interest of the evolutionary questions the study allows the authors to address. The first two of these, sampling of taxa and loci, impose a tradeoff: with finite resources, do you add more taxa or more loci? The authors follow a reasonable compromise here, obtaining a solid anchored-enrichment phylogenomic data set (423 genes, >97 kpb) for 33 taxa, but also doing additional analyses that included 13 additional taxa from which only Sanger sequencing data from 4 genes was available. The taxon sampling was pretty solid, including all 7 tribes and a majority of genera in the group. The analyses also seemed to be solid - exemplary, even, given the data available.

    This leaves the subjective question of how interesting the results are. The very scale of the task that faces systematists in general, and beetle systematists in particular, presents a daunting challenge to the reader's attention: there are so many taxa, and even a sophisticated reader may never have heard of any of them. Thus it's often the case that such studies are ignored by virtually everyone outside a tiny cadre of fellow specialists. The authors of the present study make an unusually strong case for the broader interest and importance of their investigation and its focal taxon, the belid weevils.

    The belids are of special interest because - in a world churning with change and upheaval, geologically and evolutionarily - relatively little seems to have been going on with them, at least with some of them, for the last hundred million years or so. The authors make a good case that the Araucaria-feeding belid lineages found in present-day Australasia and South America have been feeding on Araucaria continuously since the days when it was a dominant tree taxon nearly worldwide before it was largely replaced by angiosperms. Thus these lineages plausibly offer a modern glimpse of an ancient ecological community.

    Weaknesses:

    I didn't find the biogeographical analysis particularly compelling. The promise of vicariance biogeography for understanding Gondwanan taxa seems to have peaked about 3 or 4 decades ago, and since then almost every classic case has been falsified by improved phylogenetic and fossil evidence. I was hopeful, early in my reading of this article, that it would be a counterexample, showing that yes, vicariance really does explain the history of *something*. But the authors don't make a particularly strong claim for their preferred minimum-dispersal scenario; also they don't deal with the fact that the range of Araucaria was vastly greater in the past and included places like North America. Were there belids in what is now Arizona's petrified forest? It seems likely. Ignoring all of that is methodologically reasonable but doesn't yield anything particularly persuasive.