Context-dependent requirement of G protein coupling for Latrophilin-2 in target selection of hippocampal axons

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This is an intriguing study investigating the molecular mechanisms of neural circuit developmental organization. Using a defined hippocampal circuit, the authors find that ectopic expression of an adhesion G protein-receptor leads to axon mistargeting. This work defines new mechanisms of axon target specificity.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The formation of neural circuits requires extensive interactions of cell-surface proteins to guide axons to their correct target neurons. Trans -cellular interactions of the adhesion G protein-coupled receptor latrophilin-2 (Lphn2) with its partner teneurin-3 instruct the precise assembly of hippocampal networks by reciprocal repulsion. Lphn2 acts as a repulsive receptor in distal CA1 neurons to direct their axons to the proximal subiculum, and as a repulsive ligand in the proximal subiculum to direct proximal CA1 axons to the distal subiculum. It remains unclear if Lphn2-mediated intracellular signaling is required for its role in either context. Here, we show that Lphn2 couples to Gα 12/13 in heterologous cells; this coupling is increased by constitutive exposure of the tethered agonist. Specific mutations of Lphn2’s tethered agonist region disrupt its G protein coupling and autoproteolytic cleavage, whereas mutating the autoproteolytic cleavage site alone prevents cleavage but preserves a functional tethered agonist. Using an in vivo misexpression assay, we demonstrate that wild-type Lphn2 misdirects proximal CA1 axons to the proximal subiculum and that Lphn2 tethered agonist activity is required for its role as a repulsive receptor in axons. By contrast, neither tethered agonist activity nor autoproteolysis were necessary for Lphn2’s role as a repulsive ligand in the subiculum target neurons. Thus, tethered agonist activity is required for Lphn2-mediated neural circuit assembly in a context-dependent manner.

Article activity feed

  1. Author Response

    Reviewer #1 (Public Review):

    This manuscript builds on data from the same group showing that Lphn2 functions cell-autonomously as a receptor in CA1 pyramidal axons and cell-non-autonomously as a ligand in the neurons of the subiculum. In either case, binding of teneurin-3 to Lphn2 mediates repulsive events, and since different populations of neurons within each region express differing levels of both proteins, this mechanism allows proximal CA1 pyramidal axons to preferentially project to distal subiculum and distal CA1 pyramidal axons to project to proximal subiculum. The authors now ask mechanistic questions about the role of Lphn2 signaling in these wiring processes.

    The authors demonstrate that G-protein signaling downstream of Lphn2, which is mediated by the tethered agonist, is necessary for the ability of ectopically expressed Lphn2 to redirect proximal CA1 axons from distal to proximal subiculum. Moreover, the authors show that while autoproteolytic activity of Lphn2 facilitates G-protein signaling, possibly by making the tethered agonist more available for signaling, it is not necessary for axonal mistargeting. Thus, the authors conclude that tethered agonistdependent G-protein signaling is required for Lphn2-mediated hippocampal neural circuit assembly. Most of the data shown in support of these conclusions are convincing, though I have some concerns about the expression levels and/or effects of the tethered agonist mutants in CA1, which is important since the analyses assume that any defects are in the repulsive interactions described above.

    We thank Reviewer 1 for their suggestion to incorporate data on the expression levels of the tethered agonist mutants in CA1. We have now performed additional experiments and included a new Figure 1—figure supplement 2A-B to address this concern.

    The authors also use heterologous cells to determine that Lphn2 couples to Ga12/13, but not other heteromeric G-proteina-subunits. Within the context of heterologous cells, these experiments are well controlled and exhaustive, as every mutant used in vivo is carefully analyzed. One potential criticism of this work, however, is that perhaps the authors assume too much in simply translating their results in heterologous cells to neurons, especially when one of the most interesting conclusions of this paper (see below) is that Lphn2 signaling is context-dependent. Without further data to confirm the results of these experiments in the neuronal populations studied, these data primarily illustrate possibilities, but don't exclude other possibilities.

    We are grateful to Reviewer 1 for bringing this potential criticism to our attention. We have now included clarification of this point in the text and discussion of the manuscript, as noted in our response to Essential Revision #3 above.

    Finally, the authors test the role of Lphn2 functioning as a ligand in the subiculum by driving its expression in the normally Lphn2-low dorsal subiculum. As they reported before, this alteration decreases the ability of proximal CA1 axons to project to this area. Interestingly, and in contrast to the role of Lphn2 as a receptor above, neither Lphn2 autoproteolysis nor tethered agonist function are required for this effect. This finding is very interesting and will merit follow-up, though I agree with the authors that this manuscript does not require this for publication.

    In summary, this is an interesting paper that addresses timely and pressing issues in the adhesion-GPCR field.

    Reviewer #2 (Public Review):

    This is an intriguing study investigating the molecular mechanisms of the adhesion G-protein coupled receptor latrophilin-2 control of neural circuit developmental organization. Using the model CA1 to subiculum hippocampal circuit with its spatially segregated axon targeting, the authors experiments find that ectopic Lphn2 expression in CA1 neurons that normally do not express it, leads to axon mistargeting. The authors detail these circuitry alterations with Lphn2 genetic manipulations, finding that axon targeting is dependent on its GPCR signaling, likely through Galpha12/13 coupling.

    Strengths: Building off the author's previous studies, the experiments are well designed and analyzed. The advance in this study is finding that Lphn2 expression in CA1 cells that normally do not express impacts its axon targeting. They go on to show compelling data that implicates this mistargeting is dependent on Lphn2 GPCR signaling properties, identified as likely Galpha12/13 dependent.

    Weaknesses: The system used is a "misexpression system". By forcing cells with ordinally low levels to overexpress Lphn2, circuitry alterations are observed. While this gain of function assay demonstrates the importance as to why Lphn2 is not expressed in certain cell types, it isn't a physiologically relevant system to investigate Lphn2 dependent circuit development.

    We thank Reviewer 2 for the appreciation of our study. We wish to clarify, in response to the critiques of the artificial nature of misexpression system, that experiments involving loss-of-function of endogenous Lphn2 have been described in our previous study (Pederick et al., 2021). When we conditionally deleted Lphn2 in CA1, Lphn2+ mid-CA1 axons spread to distal, Ten3+ subiculum. Thus, both the gain-of-function experiment described in this study and the loss-of-function experiment described in Pederick et al., 2021 support the notion that Lphn2 acts in axons as a repulsive receptor for the Ten3 ligand.

    To strengthen this study, the following specific points could use addressing:

    1. While the data is strong, some of the terminology used is unclear, including use of terms "repulsive receptor" and "repulsive ligand". The authors use "repulsive receptor" to describe Lphn2 action for axon targeting, but repulsion and attraction processes are simultaneous. Is Lphn2 really by acting as a repulsive receptor, or alternatively, by acting to shift axon attraction to Lphn2 expressing subiculum neurons?

    We apologize for the lack of clarity. The terms “receptor” and “ligand” are used to refer to a molecule’s role in axons or target neurons, respectively, a common usage in the axon guidance field (Kolodkin and Tessier-Lavigne, 2011; PMID 21123392). Using a series of loss and gain of function manipulations, our previous data support a role for Lphn2 both as a repulsive receptor in axons and repulsive ligand in target neurons. When Lphn2 is deleted in CA1 axons they invade Ten3 subiculum target neurons. Similarly, deletion of Ten3 in the subiculum results in Lphn2-positive axons invading the Ten3 KO area. Unlike its partner Ten3, which can serve as an attractive receptor when the ligand is Ten3 and repulsive receptor when the ligand is Lphn2, Lphn2 only serves as a repulsive receptor to the Ten3 ligand. We (and others) have shown that Lphn2 does not bind homotypically (Boucard et al., 2014 and Pederick et al., 2021). We have clarified these points in the revised manuscript (2nd paragraph of Introduction).

    1. For their proposed axon guidance model to work, Lphn2 has to be signaling through Ga12/13 proteins near the axon growth cone to induce its collapse and retraction. By using Flag-tagged Lphn2 constructs in their assays, this should be visible. Clear Flag-Lphn2 signal is observed in the dendrites of infected cells (Figure1-figure supplement 1; Figure5- figure supplement 1). But does Flag-Lphn2 also localize to the pCA1 axons that are projecting to the subiculum?

    Thank you for this important question. We have added new data to show that FLAG-tagged Lphn2 is indeed found in CA1 axons. Please see our response in “Essential Revision #2” above.

    1. With their previous work, pCA1 to dSub circuit patterning is dependent on Ten3+ to Ten3+ homophilic attraction that exists between the two regions. Its unclear how ectopic Lphn2 is able to override this Ten3+ to Ten3+ connection patterning. Does ectopic Lphn2 outcompete Ten3 function in these neurons? Or alternatively, is Ten3 expression/localization impacted by the presence of ectopic Lphn2?

    We believe it is the former. Regarding the latter, please see our response in “Essential Revision #1” above.

  2. eLife assessment

    This is an intriguing study investigating the molecular mechanisms of neural circuit developmental organization. Using a defined hippocampal circuit, the authors find that ectopic expression of an adhesion G protein-receptor leads to axon mistargeting. This work defines new mechanisms of axon target specificity.

  3. Reviewer #1 (Public Review):

    This manuscript builds on data from the same group showing that Lphn2 functions cell-autonomously as a receptor in CA1 pyramidal axons and cell-non-autonomously as a ligand in the neurons of the subiculum. In either case, binding of teneurin-3 to Lphn2 mediates repulsive events, and since different populations of neurons within each region express differing levels of both proteins, this mechanism allows proximal CA1 pyramidal axons to preferentially project to distal subiculum and distal CA1 pyramidal axons to project to proximal subiculum. The authors now ask mechanistic questions about the role of Lphn2 signaling in these wiring processes.

    The authors demonstrate that G-protein signaling downstream of Lphn2, which is mediated by the tethered agonist, is necessary for the ability of ectopically expressed Lphn2 to redirect proximal CA1 axons from distal to proximal subiculum. Moreover, the authors show that while autoproteolytic activity of Lphn2 facilitates G-protein signaling, possibly by making the tethered agonist more available for signaling, it is not necessary for axonal mistargeting. Thus, the authors conclude that tethered agonist-dependent G-protein signaling is required for Lphn2-mediated hippocampal neural circuit assembly. Most of the data shown in support of these conclusions are convincing, though I have some concerns about the expression levels and/or effects of the tethered agonist mutants in CA1, which is important since the analyses assume that any defects are in the repulsive interactions described above.

    The authors also use heterologous cells to determine that Lphn2 couples to Ga12/13, but not other heteromeric G-proteina-subunits. Within the context of heterologous cells, these experiments are well controlled and exhaustive, as every mutant used in vivo is carefully analyzed. One potential criticism of this work, however, is that perhaps the authors assume too much in simply translating their results in heterologous cells to neurons, especially when one of the most interesting conclusions of this paper (see below) is that Lphn2 signaling is context-dependent. Without further data to confirm the results of these experiments in the neuronal populations studied, these data primarily illustrate possibilities, but don't exclude other possibilities.

    Finally, the authors test the role of Lphn2 functioning as a ligand in the subiculum by driving its expression in the normally Lphn2-low dorsal subiculum. As they reported before, this alteration decreases the ability of proximal CA1 axons to project to this area. Interestingly, and in contrast to the role of Lphn2 as a receptor above, neither Lphn2 autoproteolysis nor tethered agonist function are required for this effect.

    In summary, this is an interesting paper that addresses timely and pressing issues in the adhesion-GPCR field.

  4. Reviewer #2 (Public Review):

    This is an intriguing study investigating the molecular mechanisms of the adhesion G-protein coupled receptor latrophilin-2 control of neural circuit developmental organization. Using the model CA1 to subiculum hippocampal circuit with its spatially segregated axon targeting, the authors experiments find that ectopic Lphn2 expression in CA1 neurons that normally do not express it, leads to axon mistargeting. The authors detail these circuitry alterations with Lphn2 genetic manipulations, finding that axon targeting is dependent on its GPCR signaling, likely through Galpha12/13 coupling.

    Strengths: Building off the author's previous studies, the experiments are well designed and analyzed. The advance in this study is finding that Lphn2 expression in CA1 cells that normally do not express impacts its axon targeting. They go on to show compelling data that implicates this mistargeting is dependent on Lphn2 GPCR signaling properties, identified as likely Galpha12/13 dependent.

    Weaknesses: The system used is a "misexpression system". By forcing cells with ordinally low levels to overexpress Lphn2, circuitry alterations are observed. While this gain of function assay demonstrates the importance as to why Lphn2 is not expressed in certain cell types, it isn't a physiologically relevant system to investigate Lphn2 dependent circuit development.

    To strengthen this study, the following specific points could use addressing:
    • While the data is strong, some of the terminology used is unclear, including use of terms "repulsive receptor" and "repulsive ligand". The authors use "repulsive receptor" to describe Lphn2 action for axon targeting, but repulsion and attraction processes are simultaneous. Is Lphn2 really by acting as a repulsive receptor, or alternatively, by acting to shift axon attraction to Lphn2 expressing subiculum neurons?
    • For their proposed axon guidance model to work, Lphn2 has to be signaling through G12/13 proteins near the axon growth cone to induce its collapse and retraction. By using Flag-tagged Lphn2 constructs in their assays, this should be visible. Clear Flag-Lphn2 signal is observed in the dendrites of infected cells (Figure1-figure supplement 1; Figure5- figure supplement 1). But does Flag-Lphn2 also localize to the pCA1 axons that are projecting to the subiculum?
    • With their previous work, pCA1 to dSub circuit patterning is dependent on Ten3+ to Ten3+ homophilic attraction that exists between the two regions. Its unclear how ectopic Lphn2 is able to override this Ten3+ to Ten3+ connection patterning. Does ectopic Lphn2 outcompete Ten3 function in these neurons? Or alternatively, is Ten3 expression/localization impacted by the presence of ectopic Lphn2?

  5. Reviewer #3 (Public Review):

    The function of the nervous system relies on precisely connected neuronal networks. A previous study from the Luo lab reported an important pair of molecular interaction between an adhesion GPCR, latrophilin-2, and teneurin-3 in specifying the connections between CA1 neurons in the hippocampus and the subiculum. This new study continues to investigate the signaling mechanisms, particularly whether the trimeric G proteins are involved. Adhesion GPCRs are in general still under studied, esp in nervous system. This study also used a clever misexpression approach, which provide signaling studies in the in vivo context. The data are of high quality and convincing.