Latest preprint reviews

  1. Kinship analysis and pedigree reconstruction by RAD sequencing in cattle

    This article has 8 authors:
    1. Yiming Xu
    2. Wanqiu Wang
    3. Jiefeng Huang
    4. Minjie Xu
    5. Binhu Wang
    6. Yingsong Wu
    7. Yongzhong Xie
    8. Jianbo Jian
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      RAD-Seq (Restriction-site-associated DNA sequencing) is a cost-effective method for single nucleotide polymorphism (SNP) discovery and genotyping. In this study the authors performed a kinship analysis and pedigree reconstruction for two different cattle breeds (Angus and Xiangxi yellow cattle). A total of 975 cattle, including 923 offspring with 24 known sires and 28 known dams, were sampled and subjected to SNP discovery and genotyping using RAD-Seq. Producing a SNP panel with 7305 SNPs capturing the maximum difference between paternal and maternal genome information, and being able to distinguish between the F1 and F2 generation with 90% accuracy. Peer review helped highlight better the practical applications of this work. The combination of the efficiency of RNA-seq and advances in kinship analysis here can helpfully help improve breed management, local resource utilization, and conservation of livestock.

      This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  2. Chromosomal-level genome assembly and single-nucleotide polymorphism sites of black-faced spoonbill Platalea minor

    This article has 20 authors:
    1. Hong Kong Biodiversity Genomics Consortium
    2. Jerome H.L. Hui
    3. Ting Fung Chan
    4. Leo L. Chan
    5. Siu Gin Cheung
    6. Chi Chiu Cheang
    7. James K.H. Fang
    8. Juan Diego Gaitan-Espitia
    9. Stanley C.K. Lau
    10. Yik Hei Sung
    11. Chris K.C. Wong
    12. Kevin Y.L. Yip
    13. Yingying Wei
    14. Wai Lok So
    15. Wenyan Nong
    16. Sean T.S. Law
    17. Paul Crow
    18. Aiko Leong
    19. Liz Rose-Jeffreys
    20. Ho Yin Yip
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment: This work is part of a series of papers from the Hong Kong Biodiversity Genomics Consortium sequencing the rich biodiversity of species in Hong Kong (see https://doi.org/10.46471/GIGABYTE_SERIES_0006). This example assembles the genome of the black-faced spoonbill (Platalea minor), an emblematic wading bird from East Asia that is classified as globally endangered by the IUCN. This Data Release reporting a 1.24Gb chromosomal-level genome assembly produced using a combination of PacBio SMRT and Omni-C scaffolding technologies. BUSCO and Merqury validation were carried out, gene models created, and peer reviewers also requested MCscan synteny analysis. This showed the genome assembly had high sequence continuity with scaffold length N50=53 Mb. Presenting data from 14 individuals this will hopefully be a useful and valuable resources for future population genomic studies aimed at better understanding spoonbill species numbers and conservation.

      *This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  3. Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis

    This article has 7 authors:
    1. Caroline A. McCormick
    2. Stuart Akeson
    3. Sepideh Tavakoli
    4. Dylan Bloch
    5. Isabel N. Klink
    6. Miten Jain
    7. Sara H. Rouhanifard
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      Oxford nanopore direct RNA sequencing (DRS) is a relatively new sequencing technology enabling measurements of RNA modifications. In vitro transcription (IVT)-based negative controls (i.e. modification-free transcripts) are a practical and targeted control for this direct sequencing, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. This work presents exactly this type of a long-read, multicellular, poly-A RNA-based, IVT-derived, unmodified transcriptome dataset. Review flagging more statistical analyses needed be performed for the data quality, and this was provided. The resulting data providing a resource to the direct RNA analysis community, helping reduce the need for expensive IVT library preparation and sequencing for human samples. And also serving as a framework for RNA modification analysis in other organisms.

      This evaluation refers to version 1 and 2 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  4. PhysiCell Studio: a graphical tool to make agent-based modeling more accessible

    This article has 8 authors:
    1. Randy Heiland
    2. Daniel Bergman
    3. Blair Lyons
    4. Julie Cass
    5. Heber L. Rocha
    6. Marco Ruscone
    7. Vincent Noël
    8. Paul Macklin
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      This paper presents a new tool to make using PhysiCell easier, which is an open-source, physics-based multicellular simulation framework with a very wide user base. PhysiCell Studio is a graphical tool that makes it easier to build, run, and visualize PhysiCell models. Over time, it has evolved from being a GUI to include many additional functionalities, and can be used as desktop and cloud versions. This paper outlines the many features and functions, the design and development process behind it, and deployment instructions. Peer review improved the organisation of the various repositories and adding both a requirements.txt and environment.yml files. Looking to the future the developers are planning to add new features based on community feedback and contributions, and this paper presents the many code repositories if readers wish to contribute to the development process.

      This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  5. Low-coverage whole genome sequencing for a highly selective cohort of severe COVID-19 patients

    This article has 7 authors:
    1. Renato Santos
    2. Víctor Moreno-Torres
    3. Ilduara Pintos
    4. Octavio Corral
    5. Carmen de Mendoza
    6. Vicente Soriano
    7. Manuel Corpas
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      Many studies have explored the genetic determinants of COVID-19 severity, these GWAS studies using microarrays or expensive whole-genome sequencing (WGS). Low-coverage WGS data can be imputed using reference panels to enhance resolution and statistical power while maintaining much lower costs, but imputation accuracy is difficult to balance. This work demonstrates how to address these challenges utilising the GLIMPSE1 algorithm, a less resource-intensive tool that produces more accurate imputed data than its predecessors. Generating a dataset containing 79 imputed low-coverage WGS samples from patients with severe COVID-19 symptoms during the initial wave of the SARS-CoV-2 pandemic in Spain. The validation of this imputation and filtering process shows that GLIMPSE1 can be confidently used to impute variants with minor allele frequency up to approximately 2%. After peer review the authors clarified and provided more validation and statistics and figures to help convince this approach was valid. This work showcasing the viability of using low-coverage WGS imputation to generate data for the study of disease-related genetic markers, alongside a validation methodology to ensure the accuracy of the data produced. Helping inspire confidence and encouraging others to deploy similar approaches to other infectious diseases, genetic disorders, or population-based genetic studies. Particularly in large-scale genomic projects and resource-limited settings where sequencing at higher coverage could prove to be prohibitively expensive.

      This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  6. Chromosomal-level genome assembly of golden birdwing Troides aeacus (Felder & Felder, 1860)

    This article has 21 authors:
    1. Hong Kong Biodiversity Genomics Consortium
    2. Jerome H.L. Hui
    3. Ting Fung Chan
    4. Leo L. Chan
    5. Siu Gin Cheung
    6. Chi Chiu Cheang
    7. James K.H. Fang
    8. Juan D. Gaitan-Espitia
    9. Stanley C.K. Lau
    10. Yik Hei Sung
    11. Chris K.C. Wong
    12. Kevin Y.L. Yip
    13. Yingying Wei
    14. Wai Lok So
    15. Wenyan Nong
    16. Hydrogen S.F. Pun
    17. Wing Kwong Yau
    18. Colleen Y.L. Chiu
    19. Sammi S.S. Chan
    20. Kacy K.L. Man
    21. Ho Yin Yip
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      This work is part of a series of papers from the Hong Kong Biodiversity Genomics Consortium sequencing the rich biodiversity of species in Hong Kong. This example presents the genome of the golden birdwing butterfly Troides aeacus (Lepidoptera, Papilionidae). A notable and popular species in Asia that faces habitat loss due to urbanization and human activities. The lack of genomic resources impedes conservation efforts based on genetic markers, as well as better understanding of its biology. Using PacBio HiFi long reads and Omni-C a 351Mb genome was assembled genome anchored to 30 pseudo-molecules. After reviewers requested more information on the genome quality it seems there was high sequence continuity with contig length N50 = 11.67 Mb and L50 = 14, and scaffold length N50 = 12.2 Mb and L50 = 13. Allowing a total of 24,946 protein-coding genes were predicted. This study presents the first chromosomal-level genome assembly of the golden birdwing T. aeacus, a potentially useful resource for further phylogenomic studies of birdwing butterfly species in terms of species diversification and conservation. This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  7. Chromosome-level genome assembly of the common chiton, Liolophura japonica (Lischke, 1873)

    This article has 25 authors:
    1. Hong Kong Biodiversity Genomics Consortium
    2. Project Coordinator and Co-Principal Investigators
    3. Jerome H.L. Hui
    4. Ting Fung Chan
    5. Leo L. Chan
    6. Siu Gin Cheung
    7. Chi Chiu Cheang
    8. James K.H. Fang
    9. Juan D. Gaitan-Espitia
    10. Stanley C.K. Lau
    11. Yik Hei Sung
    12. Chris K.C. Wong
    13. Kevin Y.L. Yip
    14. Yingying Wei
    15. DNA extraction, library preparation and sequencing
    16. Franco M.F. Au
    17. Wai Lok So
    18. Genome assembly and gene model prediction
    19. Wenyan Nong
    20. Gene family annotation
    21. Ming Fung Franco Au
    22. Samples collectors
    23. Tin Yan Hui
    24. Brian K.H. Leung
    25. Gray A. Williams
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      This work is part of a series of papers from the Hong Kong Biodiversity Genomics Consortium sequencing the rich biodiversity of species in Hong Kong. This example assembles the genome of the common chiton, Liolophura japonica (Lischke, 1873). Chitons are marine molluscs that can be found worldwide from cold waters to the tropics that play important ecological roles in the environment, but to date are lacking in genomes with only a few assemblies available. This data was produced using PacBio HiFi reads and Omni-C sequencing data, the resulting genome assembly being around 609 Mb in size. From this 28,010 protein-coding genes were predicted. After review improved the methodological details the quality metrics look near chromosome-level, having a scaffold N50 length of 37.34 Mb and 96.1% BUSCO score. This high-quality genome should hopefully be a valuable resource for gaining new insights into the environmental adaptations of L. japonica in residing the intertidal zones and for future investigations in the evolutionary biology in Polyplacophorans and other molluscs.

      This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  8. Chromosomal-level genome assembly of the long-spined sea urchin Diadema setosum (Leske, 1778)

    This article has 22 authors:
    1. Hong Kong Biodiversity Genomics Consortium
    2. Project Coordinator and Co-Principal Investigators
    3. Jerome H.L. Hui
    4. Ting Fung Chan
    5. Leo L. Chan
    6. Siu Gin Cheung
    7. Chi Chiu Cheang
    8. James K.H. Fang
    9. Juan D. Gaitan-Espitia
    10. Stanley C.K. Lau
    11. Yik Hei Sung
    12. Chris K.C. Wong
    13. Kevin Y.L. Yip
    14. Yingying Wei
    15. DNA extraction, library preparation and sequencing
    16. Wai Lok So
    17. Genome assembly and gene model prediction
    18. Wenyan Nong
    19. Sample collector, animal culture and logistics
    20. Apple P.Y. Chui
    21. Thomas H.W. Fong
    22. Ho Yin Yip
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      This work is part of a series of papers from the Hong Kong Biodiversity Genomics Consortium sequencing the rich biodiversity of species in Hong Kong. This example assembles the genome of the long-spined sea urchin Diadema setosum (Leske, 1778). Using PacBio HiFi long-reads and Omni-C data the assembled genome size was 886 Mb, consistent to the size of other sea urchin genomes. The assembly anchored to 22 pseudo-molecules/chromosomes, and a total of 27,478 genes including 23,030 protein-coding genes were annotated. Peer review added more to the conclusion and future perspectives. The data hopefully providing a valuable resource and foundation for a better understanding of the ecology and evolution of sea urchins.

      This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  9. Genome assembly of the edible jelly fungus Dacryopinax spathularia (Dacrymycetaceae)

    This article has 25 authors:
    1. Hong Kong Biodiversity Genomics Consortium
    2. Project Coordinator and Co-Principal Investigators
    3. Jerome H.L. Hui
    4. Ting Fung Chan
    5. Leo L. Chan
    6. Siu Gin Cheung
    7. Chi Chiu Cheang
    8. James K.H. Fang
    9. Juan Diego Gaitan-Espitia
    10. Stanley C.K. Lau
    11. Yik Hei Sung
    12. Chris K.C. Wong
    13. Kevin Y.L. Yip
    14. Yingying Wei
    15. DNA extraction, library preparation and sequencing
    16. Tze Kiu Chong
    17. Sean T.S. Law
    18. Genome assembly and gene model prediction
    19. Wenyan Nong
    20. Genome analysis and quality control
    21. Wenyan Nong
    22. Sample collector and logistics
    23. Tze Kiu Chong
    24. Sean T.S. Law
    25. Ho Yin Yip
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      This work is part of a series of papers from the Hong Kong Biodiversity Genomics Consortium sequencing the rich biodiversity of species in Hong Kong. This example This work is part of a series of papers from the Hong Kong Biodiversity Genomics Consortium sequencing the rich biodiversity of species in Hong Kong. This example presenting the first whole genome assembly of Dacryopinax spathularia, an edible mushroom-forming fungus that is used in the food industry to produce natural preservatives. Using PacBio and Omni-C data a 29.2 Mb genome was assembled, with a scaffold N50 of 1.925 Mb and 92.0% BUSCO score demonstrating the quality (review pushing the authors to provide more detail and QC stats to help better convince on this). This data providing a useful resource for further phylogenomic studies in the family Dacrymycetaceae and investigations on the biosynthesis of glycolipids with potential applications in the food industry.

      This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
  10. Genome assembly of the milky mangrove Excoecaria agallocha

    This article has 26 authors:
    1. Hong Kong Biodiversity Genomics Consortium
    2. Project Coordinator and Co-Principal Investigators
    3. Jerome H.L. Hui
    4. Ting Fung Chan
    5. Leo L. Chan
    6. Siu Gin Cheung
    7. Chi Chiu Cheang
    8. James K.H. Fang
    9. Juan Diego Gaitan-Espitia
    10. Stanley C.K. Lau
    11. Yik Hei Sung
    12. Chris K.C. Wong
    13. Kevin Y.L. Yip
    14. Yingying Wei
    15. DNA extraction, library preparation and sequencing
    16. Sean T.S. Law
    17. Wai Lok So
    18. Genome assembly and gene model prediction
    19. Wenyan Nong
    20. Genome analysis and quality control
    21. Wenyan Nong
    22. Sample collector and logistics
    23. David T.W. Lau
    24. Sean T.S. Law
    25. Shing Yip Lee
    26. Ho Yin Yip
    This article has been curated by 1 group:
    • Curated by GigaByte

      Editors Assessment:

      This work is part of a series of papers from the Hong Kong Biodiversity Genomics Consortium sequencing the rich biodiversity of species in Hong Kong. This example assembles the genome of the milky mangrove Excoecaria agallocha, also known as blind-your-eye mangrove due to its toxic properties of its milky latex that can cause blindness when it comes into contact with the eyes. Living in the brackish water of tropical mangrove forests from India to Australia, they are an extremely important habitat for a diverse variety of aquatic species, including the mangrove jewel bug of which this tree is the sole food source for the larvae. Using PacBio HiFi long-reads and Omni-C technology a 1,332.45 Mb genome was assembled, with 1,402 scaffolds and a scaffold N50 of 58.95 Mb. After feedback the annotations were improved, predicting a very high number (73,740) protein coding genes. The data presented here provides a valuable resource for further investigation in the biosynthesis of phytochemical compounds in its milky latex with the potential of many medicinal and pharmacological properties. As well as increasing the understanding of biology and evolution in genome architecture in the Euphorbiaceae family and mangrove species adapted to high levels of salinity.

      This evaluation refers to version 1 of the preprint

    Reviewed by GigaByte

    This article has 2 evaluationsAppears in 2 listsLatest version Latest activity
Newer Page 2 of 10 Older