Distinct release properties of glutamate/GABA co-transmission serve as a frequency-dependent filtering of supramammillary inputs

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This important work provides evidence that glutamate and GABA are released from different synaptic vesicles at supramammillary axon terminals onto granule cells of the dentate gyrus. The study uses complementary electrophysiological and anatomical experimental approaches. Together, these provide solid evidence that the co-release of glutamate and GABA from different vesicles within the same terminal could modulate granule cell firing in a frequency-dependent manner, although thorough elimination of alternative mechanisms would have strengthened the study. The work will be of interest to neuroscientists investigating co-release of neurotransmitters in various synapses in the brain and those interested in subcortical control of hippocampal function.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Glutamate and GABA co-transmitting neurons exist in several brain regions; however, the mechanism by which these two neurotransmitters are co-released from the same synaptic terminals remains unclear. Here, we show that the supramammillary nucleus (SuM) to dentate granule cell synapses, which co-release glutamate and GABA, exhibit differences between glutamate and GABA release properties in paired-pulse ratio, Ca 2+ -sensitivity, presynaptic receptor modulation, and Ca 2+ channel-vesicle coupling configuration. Moreover, uniquantal synaptic responses show independent glutamatergic and GABAergic responses. Morphological analysis reveals that most SuM boutons form distinct glutamatergic and GABAergic synapses in proximity, each characterized by GluN1 and GABA A α1 labeling, respectively. Notably, glutamate/GABA co-transmission exhibits distinct short-term plasticities, with frequency-dependent depression of glutamate and frequency-independent stable depression of GABA. Our findings suggest that glutamate and GABA are co-released from different synaptic vesicles within the SuM terminals, and reveal that distinct transmission modes of glutamate/GABA co-release serve as frequency-dependent filters of SuM inputs.

Article activity feed

  1. eLife assessment

    This important work provides evidence that glutamate and GABA are released from different synaptic vesicles at supramammillary axon terminals onto granule cells of the dentate gyrus. The study uses complementary electrophysiological and anatomical experimental approaches. Together, these provide solid evidence that the co-release of glutamate and GABA from different vesicles within the same terminal could modulate granule cell firing in a frequency-dependent manner, although thorough elimination of alternative mechanisms would have strengthened the study. The work will be of interest to neuroscientists investigating co-release of neurotransmitters in various synapses in the brain and those interested in subcortical control of hippocampal function.

  2. Reviewer #1 (Public Review):

    This study of mixed glutamate/GABA transmission from axons of the supramammillary nucleus to dentate gyrus seeks to sort out whether the two transmitters are released from the same or different synaptic vesicles. This conundrum has been examined in other dual-transmission cases and even in this particular pathway, there are different views. The authors use a variety of electrophysiological and immunohistochemical methods to reach the surprising (to me) conclusion that glutamate and GABA-filled vesicles are distinct yet released from the same nerve terminals. The strength of the conclusion rests on the abundance of data (approaches) rather than the decisiveness of any one approach, and I came away believing that the boutons may indeed produce and release distinct types of vesicles, but have reservations. Accepting the conclusion, one is now left with another conundrum, not addressed even in the discussion: how can a single bouton sort out VGLUTs and VIAATs to different vesicles, position them in distinct locations with nm precision, and recycle them without mixing? And why do it this way instead of with single vesicles having mixed chemical content? For example, could a quantitative argument be made that separate vesicles allow for higher transmitter concentrations? I feel the paper needs to address these problems with some coherent discussion, at minimum.

    Major concerns:

    (1) Throughout the paper, the authors use repetitive optogenetic stimulation to activate SuM fibers and co-release glutamate and GABA. There are several issues here: first, can the authors definitively assure the reader that all the short-term plasticity is presynaptic and not due to ChR2 desensitization? This has not been addressed. Second, can the authors also say that all the activated fibers release both transmitters? If for example 20% of the fibers retained a one-transmitter identity and had distinct physiological properties, could that account for some of the physiological findings?

    (2) PPR differences in Figures 1F-I are statistically significant but still quite small. You could say they are more similar than different in fact, and residual differences are accounted for by secondary factors like differential receptor saturation.

    (3) The logic of the GPCR experiments needs a better setup. I could imagine different fibers released different transmitters and had different numbers of mGluRs, so that one would get different modulations. On the assumption that all the release is from a single population of boutons, then either the mGluRs are differentially segregated within the bouton, or the vesicles have differential responsiveness to the same modulatory signal (presumably a reduced Ca current). This is not developed in the paper.

    (4) The biphasic events of Figures 3 and S3: I find these (unaveraged) events a bit ambiguous. Another way to look at them is that they are not biphasic per se but rather are not categorizable. Moreover, these events are really tiny, perhaps generated by only a few receptors whose open probability is variable, thus introducing noise into the small currents.

    (5) Figure 4 indicates that the immunohistochemical analysis is done on SuM terminals, but I do not see how the authors know that these terminals come from SuM vs other inputs that converge in DG.

    (6) Figure 4E also shows many GluN1 terminals not associated with anything, not even Vglut, and the apparent numbers do not mesh with the statistics. Why?

    (7) Do the conclusions based on the fluorescence immuno mesh with the apparent dimensions of the EM active zones and the apparent intermixing of labeled vesicles in immuno EM?

    (8) Figure 6 is not so interesting to me and could be removed. It seems to test the obvious: EPSPs promote firing and IPSPs oppose it.

  3. Reviewer #2 (Public Review):

    Summary:

    In this study, the authors investigated the release properties of glutamate/GABA co-transmission at the supramammillary nucleus (SuM)-granule cell (GC) synapses using in vitro electrophysiology and anatomical approaches at the light and electron microscopy level. They found that SuM to dentate granule cell synapses, which co-release glutamate and GABA, exhibit distinct differences in paired-pulse ratio, Ca2+ sensitivity, presynaptic receptor modulation, and Ca2+ channel-vesicle coupling configuration for each neurotransmitter. The study shows that glutamate/GABA co-release produces independent glutamatergic and GABAergic synaptic responses, with postsynaptic targets segregated. They show that most SuM boutons form distinct glutamatergic and GABAergic synapses in close proximity, characterized by GluN1 and GABAAα1 receptor labeling, respectively. Furthermore, they demonstrate that glutamate/GABA co-transmission exhibits distinct short-term plasticity, with glutamate showing frequency-dependent depression and GABA showing frequency-independent stable depression.

    Their findings suggest that these distinct modes of glutamate/GABA co-release by SuM terminals serve as frequency-dependent filters of SuM inputs.

    Strengths:

    The conclusions of this paper are mostly well supported by the data.

    Weaknesses:

    Some aspects of Supplementary Figure 1A and the table need clarification. Specifically, the claim that the authors have stimulated an axon fiber rather than axon terminals is not convincingly supported by the diagram of the experimental setup. Additionally, the antibody listed in the primary antibodies section recognizes the gamma2 subunit of the GABAA receptor, not the alpha1 subunit mentioned in the results and Figure 4.

  4. Reviewer #3 (Public Review):

    Summary:

    In this manuscript, Hirai et al investigated the release properties of glutamate/GABA co-transmission at SuM-GC synapses and reported that glutamate/GABA co-transmission exhibits distinct short-term plasticity with segregated postsynaptic targets. Using optogenetics, whole-cell patch-clamp recordings, and immunohistochemistry, the authors reveal distinct transmission modes of glutamate/GABA co-release as frequency-dependent filters of incoming SuM inputs.

    Strengths:

    Overall, this study is well-designed and executed; conclusions are supported by the results. This study addressed a long-standing question of whether GABA and glutamate are packaged in the same vesicles and co-released in response to the same stimuli in the SuM-GC synapses (Pedersen et al., 2017; Hashimotodani et al., 2018; Billwiller et al., 2020; Chen et al., 2020; Li et al., 2020; Ajibola et al., 2021). Knowledge gained from this study advances our understanding of neurotransmitter co-release mechanisms and their functional roles in the hippocampal circuits.

    Weaknesses:

    No major issues are noted. Some minor issues related to data presentation and experimental details are listed below.