Repression of PRMT activities sensitize homologous recombination-proficient ovarian and breast cancer cells to PARP inhibitor treatment

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study presents a valuable finding that PRMT inhibitors may exert synergistic effects with PARP inhibitors to eliminate ovarian and triple-negative cancer cells in vitro and in vivo using preclinical mouse models. The evidence supporting the claims of the authors is solid, although the inclusion of novelty justification would have strengthened the study. The work will be of interest to scientists working on breast cancer and ovarian cancer.

This article has been Reviewed by the following groups

Read the full article

Abstract

An “induced PARP inhibitor (PARPi) sensitivity by epigenetic modulation” strategy is being evaluated in the clinic to sensitize homologous recombination (HR)-proficient tumors to PARPi treatments. To expand its clinical applications and identify more efficient combinations, we performed a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Both type I PRMT inhibitor and PRMT5 inhibitor exhibit high combination and clinical priority scores in our screen. PRMT inhibition significantly enhances PARPi treatment-induced DNA damage in HR-proficient ovarian and breast cancer cells. Mechanistically, PRMTs maintain the expression of genes associated with DNA damage repair and BRCAness and regulate intrinsic innate immune pathways in cancer cells. Analyzing large-scale genomic and functional profiles from TCGA and DepMap further confirms that PRMT1, PRMT4, and PRMT5 are potential therapeutic targets in oncology. Finally, PRMT1 and PRMT5 inhibition act synergistically to enhance PARPi sensitivity. Our studies provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian or breast cancer.

Article activity feed

  1. eLife assessment

    This study presents a valuable finding that PRMT inhibitors may exert synergistic effects with PARP inhibitors to eliminate ovarian and triple-negative cancer cells in vitro and in vivo using preclinical mouse models. The evidence supporting the claims of the authors is solid, although the inclusion of novelty justification would have strengthened the study. The work will be of interest to scientists working on breast cancer and ovarian cancer.

  2. Reviewer #1 (Public Review):

    Summary:

    The authors aimed to enhance the effectiveness of PARP inhibitors (PARPi) in treating high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) by inhibiting PRMT1/5 enzymes. They conducted a drug screen combining PARPi with 74 epigenetic modulators to identify promising combinations.

    Zhang et al. reported that protein arginine methyltransferase (PRMT) 1/5 inhibition acts synergistically to enhance the sensitivity of Poly (ADP-ribose) polymerase inhibitors (PARPi) in high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) cells. The authors are the first to perform a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Their drug screen identified both PRMT1/5 inhibitors with high combination and clinical priority scores in PARPi treatment. Notably, PRMT1/5 inhibitors significantly enhance PARPi treatment-induced DNA damage in HR-proficient HGSOC and TNBC cells through enhanced maintenance of gene expression associated with DNA damage repair, BRCAness, and intrinsic innate immune pathways in cancer cells. Additionally, bioinformatic analysis of large-scale genomic and functional profiles from TCGA and DepMap further supports that PRMT1/5 are potential therapeutic targets in oncology, including HGSOC and TNBC. These results provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian and breast cancer. Thus, this discovery has a high impact on developing novel therapeutic approaches to overcome resistance to PARPi in clinical cancer therapy. The data and presentation in this manuscript are straightforward and reliable.

    Strengths:

    (1) Innovative Approach: First to screen PARPi with a large panel of epigenetic modulators.
    (2) Significant Results: Found that PRMT1/5 inhibitors significantly boost PARPi effectiveness in HR-proficient HGSOC and TNBC cells.
    (3) Mechanistic Insights: Showed how PRMT1/5 inhibitors enhance DNA damage repair and immune pathways.
    (4) Robust Data: Supported by extensive bioinformatic analysis from large genomic databases.

    Weaknesses:

    (1) Novelty Clarification: Needs clearer comparison to existing studies showing similar effects.
    (2) Unclear Mechanisms: More investigation is needed on how MYC targets correlate with PRMT1/5.
    (3) Inconsistent Data: ERCC1 expression results varied across cell lines.
    (4) Limited Immune Study: Using immunodeficient mice does not fully explore immune responses.
    (5) Statistical Methods: Should use one-way ANOVA instead of a two-tailed Student's t-test for multiple comparisons.

  3. Reviewer #2 (Public Review):

    Summary:

    The authors show that a combination of arginine methyltransferase inhibitors synergize with PARP inhibitors to kill ovarian and triple-negative cancer cell lines in vitro and in vivo using preclinical mouse models.

    PARP inhibitors have been the common targeted-therapy options to treat high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC). PRMTs are oncological therapeutic targets and specific inhibitors have been developed. However, due to the insufficiency of PRMTi or PARPi single treatment for HGSOC and TNBC, designing novel combinations of existing inhibitors is necessary. In previous studies, the authors and others developed an "induced PARPi sensitivity by epigenetic modulation" strategy to target resistant tumors. In this study, the authors presented a triple combination of PRMT1i, PRMT5i and PARPi that synergistically kills TNBC cells. A drug screen and RNA-seq analysis were performed to indicate cancer cell growth dependency of PRMT1 and PRMT5, and their CRISPR/Cas9 knockout sensitizes cancer cells to PARPi treatment. It was shown that the cells accumulate DNA damage and have increased caspase 3/7 activity. RNA-seq analysis identified BRCAness genes, and the authors closely studied a top hit ERCC1 as a downregulated DNA damage protein in PRMT inhibitor treatments. ERCC1 is known to be synthetic lethal with PARP inhibitors. Thus, the authors add back ERCC1 and reduce the effects of PRMT inhibitors suggesting PRMT inhibitors mediate, in part, their effect via ERCC1 downregulation. The combination therapy (PRMT/PARP) is validated in 2D cultures of cell lines (OVCAR3, 8 and MDA-MB-231) and has shown to be effective in nude mice with MDA-MB-231 xenograph models.

    Strengths and weaknesses:

    Overall, the data is well-presented. The experiments are well-performed, convincing, and have the appropriate controls (using inhibitors and genetic deletions) and statistics.

    They identify the DNA damage protein ERCC1 to be reduced in expression with PRMT inhibitors. As ERCC1 is known to be synthetic lethal with PARPi, this provides a mechanism for the synergy. They use cell lines only for their study in 2D as well as xenograph models.