Monoclonal antibodies derived from B cells in subjects with cystic fibrosis reduce Pseudomonas aeruginosa burden in mice
Curation statements for this article:-
Curated by eLife
eLife Assessment
Treatment of Pseudomonas aeruginosa (PA) infections is challenging because of intrinsic and acquired antibiotic resistance to most antibiotic drug classes. Therefore, by using donor B cells in subjects with cystic fibrosis who undergo intermittent or chronic airway PA infections, the authors aimed to isolate B-cell receptors against PA virulence factors and examined their biological activities. The data are solid and the protective antibodies identified in this study could be useful for protection against PA.
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (eLife)
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across 3 donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.
Article activity feed
-
-
-
eLife Assessment
Treatment of Pseudomonas aeruginosa (PA) infections is challenging because of intrinsic and acquired antibiotic resistance to most antibiotic drug classes. Therefore, by using donor B cells in subjects with cystic fibrosis who undergo intermittent or chronic airway PA infections, the authors aimed to isolate B-cell receptors against PA virulence factors and examined their biological activities. The data are solid and the protective antibodies identified in this study could be useful for protection against PA.
-
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has …
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.
Strengths:
(1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.
(2) The authors' conclusion is supported by data.
Weaknesses:
Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.
-
Author response:
The following is the authors’ response to the original reviews.
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). …
Author response:
The following is the authors’ response to the original reviews.
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.
Strengths:
(1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.
(2) The authors' conclusion is supported by data.
Weaknesses:
Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.
The authors thank the reviewer for their thoughtful positive assessment. As noted by the reviewer, the studies described here, which were performed in mice, show that our MBC-derived mAbs are as effective as V2L2MD, a mAb that is one component of the gremubamab bi-specific. However, key theoretical strengths of MBC-derived mAbs (reduced immunogenicity, full participation in effector functions) are not easily tested in mice. We have clarified and expanded our discussion of these points in our revised manuscript, particularly in the Discussion paragraph 4.
Recommendations for the authors:
Reviewer #1 (Recommendations for the authors):
Page 8. Using improved methods that enhanced the efficiency and depth of sequencing (manuscript in preparation...). This method is not provided in detail. The authors should provide a detailed method (as a preprint on a public database or described in the method section).
We thank the reviewers for their interest in the details of the specific methods for single cell B cell receptor sequencing. We regret that the manuscript is still in preparation. In fact, our current methods section provides much more detail about sequencing methods than is customarily supplied by authors mAb development papers. However, we understand the frustration and will remove our citation of our manuscript in preparation in our revised manuscript.
-
-
-
eLife Assessment
Treatment of pseudomonas aeruginosa (PA) is challenging because of intrinsic and acquired antibiotic resistance to most antibiotic drug classes. Therefore, by using donor B cells in subjects with cystic fibrosis who undergo intermittent or chronic airway PA infections, the authors tried to isolate BCRs against PA virulence factors and examine their biological activities. The data are solid and isolated protective antibodies could be useful for protection against PA.
-
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has …
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.
Strengths:
(1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.
(2) The authors' conclusion is supported by data.
Weaknesses:
Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.
-
Author response:
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as …
Author response:
Joint Public Review:
Summary:
This study presents a strategy to efficiently isolate PcrV-specific BCRs from human donors with cystic fibrosis who have/had Pseudomonas aeruginosa (PA) infection. Isolation of mAbs that provide protection against PA may be a key to developing a new strategy to treat PA infection as the PA has intrinsic and acquired resistance to most antibiotic drug classes. Hale et al. developed fluorescently labeled antigen-hook and isolated mAbs with anti-PA activity. Overall, the authors' conclusion is supported by solid data analysis presented in the paper. Four of five recombinantly expressed PcrV-specific mAbs exhibited anti-PA activity in a murine pneumonia challenge model as potent as the V2L2MD mAb (equivalent to gremubamab). However, therapeutic potency for these isolated mAbs is uncertain as the gremubamab has failed in Phase 2 trials. Clarification of this point would greatly benefit this paper.
Strengths:
(1) High efficiency of isolating antigen-specific BCRs using an antigenic hook.
(2) The authors' conclusion is supported by data.
Weaknesses:
Although the authors state that the goal of this study was to generate novel protective mAbs for therapeutic use (P12; Para. 2), it is unclear whether PcrV-specific mAbs isolated in this study have therapeutic potential better than the gremubamab, which has failed in Phase 2 trials. Four of five PcrV-specific mAbs isolated in this study reduced bacterial burdens in mice as potent as, but not superior to, gremubamab-equivalent mAb. Clarification of this concern by revising the text or providing experimental results that show better potential than gremubamab would greatly benefit this paper.
The authors thank the reviewer for their thoughtful positive assessment. As noted by the reviewer, the studies described here, which were performed in mice, show that our MBC-derived mAbs are as effective as V2L2MD, a mAb that is one component of the gremubamab bi-specific. However, key theoretical strengths of MBC-derived mAbs (reduced immunogenicity, full participation in effector functions) are not easily tested in mice. We have clarified and expanded our discussion of these points in our revised manuscript, particularly in the Discussion paragraph 4.
-