Ih Block Reveals Separation of Timescales in Pyloric Rhythm Response to Temperature Changes in Cancer borealis

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This important study investigates neurobiological mechanisms underlying the maintenance of stable, functionally appropriate rhythmic motor patterns during changing environmental conditions - temperature in this study in the crab Cancer borealis stomatogastric central neural pattern generating circuits producing the rhythmic pyloric motor pattern, which is naturally subjected to temperature perturbations over a substantial range. The authors present compelling evidence that the neuronal hyperpolarization-activated inward current (Ih), known to contribute to rhythm control, plays a key role in the ability of these circuits to appropriately adjust the frequency of rhythmic neural activity in a smooth monotonic fashion while maintaining the relative timing of different phases of the activity pattern that determines proper motor coordination transiently and persistently to temperature perturbations. This study will interest neurobiologists studying rhythmic motor circuits and systems and their physiological adaptations.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Motor systems operate over a range of frequencies and relative timing (phase). We studied the contribution of the hyperpolarization-activated inward current (I h ) to frequency and phase in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis as temperature was altered from 11°C to 21°C. Under control conditions, the frequency of the rhythm increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. When we blocked I h with cesium (Cs + ) PD offset, LP onset, and LP offset were all phase advanced in Cs + at 11°C, and the latter two further advanced as temperature increased. In Cs + the steady state increase in pyloric frequency with temperature diminished and the Q 10 of the pyloric frequency dropped from ∼1.75 to ∼1.35. Unexpectedly in Cs + , the frequency displayed non-monotonic dynamics during temperature transitions; the frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic “jag”. Interestingly, these jags were still present during temperature transitions in Cs + when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that I h plays an important role in the ability of this circuit to produce smooth transitory responses and persistent frequency increases by different mechanisms during temperature fluctuations.

Article activity feed

  1. eLife assessment

    This important study investigates neurobiological mechanisms underlying the maintenance of stable, functionally appropriate rhythmic motor patterns during changing environmental conditions - temperature in this study in the crab Cancer borealis stomatogastric central neural pattern generating circuits producing the rhythmic pyloric motor pattern, which is naturally subjected to temperature perturbations over a substantial range. The authors present compelling evidence that the neuronal hyperpolarization-activated inward current (Ih), known to contribute to rhythm control, plays a key role in the ability of these circuits to appropriately adjust the frequency of rhythmic neural activity in a smooth monotonic fashion while maintaining the relative timing of different phases of the activity pattern that determines proper motor coordination transiently and persistently to temperature perturbations. This study will interest neurobiologists studying rhythmic motor circuits and systems and their physiological adaptations.

  2. Reviewer #1 (Public Review):

    Summary:

    This interesting study investigates the neurobiological mechanisms underlying the stable operation and maintenance of functionally appropriate rhythmic motor patterns during changing environmental conditions - temperature in this study in the crab Cancer borealis stomatogastric neural pattern generating network producing the pyloric motor rhythm, which is naturally subjected to temperature perturbations over a substantial range. This study is relevant to the general problem that some rhythmic motor systems adjust to changing environmental conditions and state changes by increasing the cycle frequency in a smooth monotonic fashion while maintaining the relative timing of different network activity pattern phases that determine proper motor coordination. How this is achieved mechanistically in complex dynamic motor networks is not understood, particularly how the frequency and phase adjustments are achieved as conditions change while avoiding operational instabilities on different time scales. The authors specifically studied the contributions of the hyperpolarization-activated inward current (Ih), which is involved in rhythm control, to the adjustments of frequency and phases in the pyloric rhythmic pattern as the temperature was altered from 11 degrees C to 21 degrees C. They present strong evidence that this current is a critical biophysical feature in the ability of this system to adjust transiently and persistently to temperature perturbations appropriately. After blocking Ih in the pyloric network with cesium, the network was unable to reliably produce its characteristic rapid and smooth increase in the frequency of the triphasic rhythmic motor pattern in response to increasing temperature or its typical steady-state increase in frequency over this Q10 temperature range.

    Strengths:

    (1) The authors addressed this problem by technically rigorous experiments in the crab Cancer borealis stomatogastric ganglion (STG) in vitro, which readily allows for neuronal activity recording in a behaviorally and architecturally defined rhythmic neural circuit in conjunction with the application of blockers of Ih and synaptic receptors to disrupt circuit interactions. This approach is an effective way to experimentally investigate how complex rhythmic networks, at least in poikilotherms, mechanistically adjust to environmental perturbations such as temperature.

    (2) While previous work demonstrated that Ih increases in pyloric neurons as temperature increases, the authors here establish that this increase is necessary for normal responses of STG neural activity to temperature, which consist of a smooth monotonic increase in the frequency of rhythmic activity with increasing temperature.

    (3) The data shows that blocking Ih with cesium causes the frequency to transiently decrease ("jags") when the temperature increases and then increases after the temperature stabilizes at a steady state, revealing a non-monotonic frequency response to temperature perturbations.

    (4) The authors dissect some of the underlying neuronal and circuit dynamics, presenting evidence that after blocking Ih, the non-monotonic jags in the frequency response are mediated by intrinsic properties of pacemaker neurons, while in the steady state, Ih determined the overall frequency change (i.e., temperature sensitivity) through network interactions.

    (5) The authors' results highlight the existence of more complex dynamic responses to increasing temperature for the first time, suggesting a longer timescale process than previously recognized that may result from interactions between multiple channels and/or ion channel kinetics.

    Weaknesses:

    The involvement of Ih in achieving the frequency and phase adjustments as conditions change and allowing smooth transitions to avoid operational instabilities in other complex rhythmic motor netReviewer #2 (Public Review):

    Summary:

    Using the crustacean stomatogastric nervous system (STNS), the authors present an interesting study wherein the contribution of the Ih current to temperature-induced changes in the frequency of a rhythmically active neural circuit is evaluated. Ih is a hyperpolarization-activated cation current that depolarizes neurons. Under normal conditions, increasing the temperature of the STNS increases the frequency of the spontaneously active pyloric rhythm. Notably, under normal conditions, as temperature systematically increases, the concomitant increase in pyloric frequency is smooth (i.e., monotonic). By contrast, blocking Ih with extracellular cesium produces temperature-induced pyloric frequency changes that follow a characteristic sawtooth response (i.e., non-monotonic). That is, in cesium, increasing temperature initially results in a transient drop in pyloric frequency that then stabilizes at a higher frequency. Thus, the authors conclude that Ih establishes a mechanism that ensures smooth changes in neural network frequency during environmental disturbances, a feature that likely bestows advantages to the animal's function.

    The study describes several surprising and interesting findings. In general, the study's primary observation of the cesium-induced sawtooth response is remarkable. To my knowledge, this type of response has not yet been described in neurobiological systems, and I suspect that the unexpected response will be of interest to many readers.

    At first glance, I had some concerns regarding the use of extracellular cesium to understand network phenomena. Yes, extracellular cesium blocks Ih. But extracellular cesium has also been shown to block astrocytic potassium channels, at least in mammalian systems (i.e., K-IR, PMID: 10601465), and such a blockade can elevate extracellular potassium. I was heartened to see that the authors acknowledge the non-specificity of cesium (lines 320-325) and I agree with the authors' contention that "a first approximation most of the effects seen here can likely be attributed to Cs+ block of Ih". Upon reflecting on the potential confound, I was also reassured to see that extracellular cesium alone does not increase pyloric frequency, an effect that might be expected if cesium indirectly raises [K+]outside. I suggest including that point in the discussion.

    In summary, the authors present a solid investigation of a surprising biological phenomenon. In general, my comments are fairly minor. This is an interesting study.

    Strengths:

    A major strength of the study is the identification of an ionic conductance that mediates stable, monotonic changes in oscillatory frequency that accompany changes in the environment (i.e., temperature).

    Weaknesses:

    A potential experimental concern stems from the use of extracellular cesium to attribute network effects specifically to Ih. Previous work has shown that extracellular cesium also blocks inward-rectifier potassium channels expressed by astrocytes, and that such blockade may also elevate extracellular potassium, an action that generally depolarizes neurons. Notably, the authors address this potential concern in the discussion.works, for example, in homeotherms, is not established, so the present results may have limited general extrapolations.

  3. Reviewer #2 (Public Review):

    Summary:

    Using the crustacean stomatogastric nervous system (STNS), the authors present an interesting study wherein the contribution of the Ih current to temperature-induced changes in the frequency of a rhythmically active neural circuit is evaluated. Ih is a hyperpolarization-activated cation current that depolarizes neurons. Under normal conditions, increasing the temperature of the STNS increases the frequency of the spontaneously active pyloric rhythm. Notably, under normal conditions, as temperature systematically increases, the concomitant increase in pyloric frequency is smooth (i.e., monotonic). By contrast, blocking Ih with extracellular cesium produces temperature-induced pyloric frequency changes that follow a characteristic sawtooth response (i.e., non-monotonic). That is, in cesium, increasing temperature initially results in a transient drop in pyloric frequency that then stabilizes at a higher frequency. Thus, the authors conclude that Ih establishes a mechanism that ensures smooth changes in neural network frequency during environmental disturbances, a feature that likely bestows advantages to the animal's function.

    The study describes several surprising and interesting findings. In general, the study's primary observation of the cesium-induced sawtooth response is remarkable. To my knowledge, this type of response has not yet been described in neurobiological systems, and I suspect that the unexpected response will be of interest to many readers.

    At first glance, I had some concerns regarding the use of extracellular cesium to understand network phenomena. Yes, extracellular cesium blocks Ih. But extracellular cesium has also been shown to block astrocytic potassium channels, at least in mammalian systems (i.e., K-IR, PMID: 10601465), and such a blockade can elevate extracellular potassium. I was heartened to see that the authors acknowledge the non-specificity of cesium (lines 320-325) and I agree with the authors' contention that "a first approximation most of the effects seen here can likely be attributed to Cs+ block of Ih". Upon reflecting on the potential confound, I was also reassured to see that extracellular cesium alone does not increase pyloric frequency, an effect that might be expected if cesium indirectly raises [K+]outside. I suggest including that point in the discussion.

    In summary, the authors present a solid investigation of a surprising biological phenomenon. In general, my comments are fairly minor. This is an interesting study.

    Strengths:

    A major strength of the study is the identification of an ionic conductance that mediates stable, monotonic changes in oscillatory frequency that accompany changes in the environment (i.e., temperature).

    Weaknesses:

    A potential experimental concern stems from the use of extracellular cesium to attribute network effects specifically to Ih. Previous work has shown that extracellular cesium also blocks inward-rectifier potassium channels expressed by astrocytes, and that such blockade may also elevate extracellular potassium, an action that generally depolarizes neurons. Notably, the authors address this potential concern in the discussion.

  4. Reviewer #3 (Public Review):

    Summary:

    This paper presents a systematic analylsis of the role of the hyperpolarization-activated inward current (the h current) in the response of the pyloric rhythm of the stomatogastric ganglion (STG) of the crab. In a detailed set of experiments, they analyze the effect of blocking h current with bath infusion of the h current blocker cesium (perfused as CsCl). They show interesting and reproducible effects that blockade of h current results in a period of frequency decrease after an upward step in temperature, followed by a slow increase in frequency.
    This contrasts with the normal temperature response that shows an increase in frequency with an increase in temperature without a downward "jag" in the frequency response. This is an important paper for showing the role of h current in stabilizing network dynamics in response to perturbations such as a temperature change.

    The major effects are shown very clearly and convincingly in a range of experiments with combined intracellular recording from neurons during changes in temperature.

    They also provide additional detailed analyses of the effect of picrotoxin on these changes, showing that most of the effects except for the loss of frequency increase, appear to indicate that these effects are due to the role of h current in the pacemaker neurons PD.

    Weaknesses :

    I know the Marder lab has detailed models of the pyloric rhythm. I am not saying they have to add modeling to this already extensive and detailed paper, but it would be useful to know how much of these temperature effects have been modeled successfully and which ones have never been shown in the models.

    They describe the ionic mechanism for the decrease and increase in frequency as a difference in temperature sensitivity of different components of the A current, but it seems like it is also a function of the time course of the response to change in temperature (i.e. the different components could have the same final effect of temperature but show a different time course of the change). They could mention any known data about the mechanism for how temperature is altering these channel kinetics and whether this indicates a change in time course of response to the same temperature, or a difference in actual steady-state temperature sensitivity.

  5. Author response:

    We thank the reviewers for their kind comments and advice. Like Reviewer 1, we acknowledge that while the exact involvement of Ih in allowing smooth transitions is likely not universal across all systems, our demonstration of the ways in which such currents can affect the dynamics of the response of complex rhythmic motor networks provides valuable insight. To address the concerns of Reviewer 2, we intend to include a sentence in the discussion to highlight the fact that cesium neither increased the pyloric frequency nor cause consistent depolarization in intracellular recordings. We will also highlight that these observations suggest both that cesium is not indirectly raising [K+]outside and support the conclusion that the effects of cesium are primarily through blockade of Ih rather than other potassium channels.

    Reviewer 3 raised some important points about modeling. While the lab has models that explore the effects of temperature on artificial triphasic rhythms, these models do not account for all the biophysical nuances of the full biological system. We have limited data about the exact nature of temperature-induced parameter changes and the extent to which these changes are mediated by intrinsic effects of temperature on protein structure versus protein interactions/modification by e.g. phosphorylation. With respects to the A current, we have seen in Tang et al., 2010 that the activation and inactivation rates are differentially temperature sensitive but do not have the data to suggest whether or not the time courses of such sensitivities are different as well. We intend to mention these facts in the paper, but plan to leave more comprehensive modeling as the purview of future works.