Guardian of Excitability: Multifaceted Role of Galanin in Whole Brain Excitability

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study shows that a peptide called galanin can decrease or increase seizure activity in experimental models of seizures depending on the way seizures are induced (genetic vs. pharmacological). The authors use zebrafish and several methods to address the effects of galanin. The study will be useful to researchers who use zebrafish as experimental animals and who are interested in how the peptides in the brain (neuropeptides) regulate seizures. However, the strength of evidence was considered incomplete at the present time due to several limitations of the results.

This article has been Reviewed by the following groups

Read the full article

Abstract

Galanin is a neuropeptide, which is critically involved in homeostatic processes like controlling arousal, sleep, and regulation of stress. This extensive range of functions aligns with implications of galanin in diverse pathologies, including anxiety disorders, depression, and epilepsy. Here we investigated the regulatory function of galanin on whole-brain activity in larval zebrafish using wide-field Ca 2+ imaging. Combining this with genetic perturbations of galanin signaling and pharmacologically increasing neuronal activity, we are able to probe actions of galanin across the entire brain. Our findings demonstrate that under unperturbed conditions and during epileptic seizures, galanin exerts a sedative influence on the brain, primarily through the galanin receptor 1a ( galr1a ). However, exposure to acute stressors like pentylenetetrazole (PTZ) compromises galanin’s sedative effects, leading to overactivation of the brain and increased seizure occurrence. Interestingly, galanin’s impact on seizures appears to be bidirectional, as it can both decrease seizure severity and increase seizure occurrence, potentially through different galanin receptor subtypes. This nuanced interplay between galanin and various physiological processes underscores its significance in modulating stress-related pathways and suggests its potential implications for neurological disorders such as epilepsy. Taken together, our data sheds light on a multifaceted role of galanin, where galanin regulates whole-brain activity but also shapes acute responses to stress.

Article activity feed

  1. eLife assessment

    This study shows that a peptide called galanin can decrease or increase seizure activity in experimental models of seizures depending on the way seizures are induced (genetic vs. pharmacological). The authors use zebrafish and several methods to address the effects of galanin. The study will be useful to researchers who use zebrafish as experimental animals and who are interested in how the peptides in the brain (neuropeptides) regulate seizures. However, the strength of evidence was considered incomplete at the present time due to several limitations of the results.

  2. Reviewer #1 (Public Review):

    Summary:

    In this study, the authors explored how galanin affects whole-brain activity in larval zebrafish using wide-field Ca2+ imaging, genetic modifications, and drugs that increase brain activity. The authors conclude that galanin has a sedative effect on the brain under normal conditions and during seizures, mainly through the galanin receptor 1a (galr1a). However, acute "stressors(?)" like pentylenetetrazole (PTZ) reduce galanin's effects, leading to increased brain activity and more seizures. The authors claim that galanin can reduce seizure severity while increasing seizure occurrence, speculated to occur through different receptor subtypes. This study confirms galanin's complex role in brain activity, supporting its potential impact on epilepsy.

    Strengths:

    The overall strength of the study lies primarily in its methodological approach using whole-brain Calcium imaging facilitated by the transparency of zebrafish larvae. Additionally, the use of transgenic zebrafish models is an advantage, as it enables genetic manipulations to investigate specific aspects of galanin signaling. This combination of advanced imaging and genetic tools allows for addressing galanin's role in regulating brain activity.

    Weaknesses:

    The weaknesses of the study also stem from the methodological approach, particularly the use of whole-brain Calcium imaging as a measure of brain activity. While epilepsy and seizures involve network interactions, they typically do not originate across the entire brain simultaneously. Seizures often begin in specific regions or even within specific populations of neurons within those regions. Therefore, a whole-brain approach, especially with Calcium imaging with inherited limitations, may not fully capture the localized nature of seizure initiation and propagation, potentially limiting the understanding of Galanin's role in epilepsy.

    Furthermore, Galanin's effects may vary across different brain areas, likely influenced by the predominant receptor types expressed in those regions. Additionally, the use of PTZ as a "stressor" is questionable since PTZ induces seizures rather than conventional stress. Referring to seizures induced by PTZ as "stress" might be a misinterpretation intended to fit the proposed model of stress regulation by receptors other than Galanin receptor 1 (GalR1).

    The description of the EAAT2 mutants is missing crucial details. EAAT2 plays a significant role in the uptake of glutamate from the synaptic cleft, thereby regulating excitatory neurotransmission and preventing excitotoxicity. Authors suggest that in EAAT2 knockout (KO) mice galanin expression is upregulated 15-fold compared to wild-type (WT) mice, which could be interpreted as galanin playing a role in the hypoactivity observed in these animals.

    However, the study does not explore the misregulation of other genes that could be contributing to the observed phenotype. For instance, if AMPA receptors are significantly downregulated, or if there are alterations in other genes critical for brain activity, these changes could be more important than the upregulation of galanin. The lack of wider gene expression analysis leaves open the possibility that the observed hypoactivity could be due to factors other than, or in addition to, galanin upregulation.

    Moreover, the observation that in double KO mice for both EAAT2 and galanin, there was little difference in seizure susceptibility compared to EAAT2 KO mice alone further supports the idea that galanin upregulation might not be the reason for the observed phenotype. This indicates that other regulatory mechanisms or gene expressions might be playing a more pivotal role in the manifestation of hypoactivity in EAAT2 mutants.

    These methodological shortcomings and conceptual inconsistencies undermine the perceived strengths of the study, and hinders understanding of Galanin's role in epilepsy and stress regulation.

  3. Reviewer #2 (Public Review):

    Summary:

    This study is an investigation of galanin and galanin receptor signaling on whole-brain activity in the context of recurrent seizure activity or under homeostatic basal conditions. The authors primarily use calcium imaging to observe whole-brain neuronal activity accompanied by galanin qPCR to determine how manipulations of galanin or the galr1a receptor affect the activity of the whole-brain under non-ictal or seizure event conditions. The authors' Eaat2a-/- model (introduced in their Glia 2022 paper, PMID 34716961) that shows recurrent seizure activity alongside suppression of neuronal activity and locomotion in the time periods lacking seizures is used in this paper in comparison to the well-known pentylenetetrazole (PTZ) pharmacological model of epilepsy in zebrafish. Given the literature cited in their Introduction, the authors reasonably hypothesize that galanin will exert a net inhibitory effect on brain activity in models of epilepsy and at homeostatic baseline, but were surprised to find that this hypothesis was only moderately supported in their Eaat2a-/- model. In contrast, under PTZ challenge, fish with galanin overexpression showed increased seizure number and reduced duration while fish with galanin KO showed reduced seizure number and increased duration. These results would have been greatly enriched by the inclusion of behavioral analyses of seizure activity and locomotion (similar to the authors' 2022 Glia paper and/or PMIDs 15730879, 24002024). In addition, the authors have not accounted for sex as a biological variable, though they did note that sex sorting zebrafish larvae precludes sex selection at the younger ages used. It would be helpful to include smaller experiments taken from pilot experiments in older, sex-balanced groups of the relevant zebrafish to increase confidence in the findings' robustness across sexes. A possible major caveat is that all of the various genetic manipulations are non-conditional as performed, meaning that developmental impacts of galanin overexpression or galanin or galr1a knockout on the observed results have not been controlled for and may have had a confounding influence on the authors' findings. Overall, this study is important and solid (yet limited), and carries clear value for understanding the multifaceted functions that neuronal galanin can have under homeostatic and disease conditions.

    Strengths:

    - The authors convincingly show that galanin is upregulated across multiple contexts that feature seizure activity or hyperexcitability in zebrafish, and appears to reduce neuronal activity overall, with key identified exceptions (PTZ model).

    - The authors use both genetic and pharmacological models to answer their question, and through this diverse approach, find serendipitous results that suggest novel underexplored functions of galanin and its receptors in basal and disease conditions. Their question is well-informed by the cited literature, though the authors should cite and consider their findings in the context of Mazarati et al., 1998 (PMID:982276). The authors' Discussion places their findings in context, allowing for multiple interpretations and suggesting some convincing explanations.

    - Sample sizes are robust and the methods used are well-characterized, with a few exceptions (as the paper is currently written).

    - Use of a glutamatergic signaling-based genetic model of epilepsy (Eaat2a-/-) is likely the most appropriate selection to test how galanin signaling can alter seizure activity, as galanin is known to reduce glutamatergic release as an inhibitory mechanism in rodent hippocampal neurons via GalR1a (alongside GIRK activation effects). Given that PTZ instead acts through GABAergic signaling pathways, it is reasonable and useful to note that their glutamate-based genetic model showed different effects than did their GABAergic-based model of seizure activity.

    Weaknesses:

    - The authors do not include behavioral assessments of seizure or locomotor activity that would be expected in this paper given their characterizations of their Eaat2a-/- model in the Glia 2022 paper that showed these behavioral data for this zebrafish model. These data would inform the reader of the behavioral phenotypes to expect under the various conditions and would likely further support the authors' findings if obtained and reported.

    - No assessment of sex as a biological variable is included, though it is understood that these specific studied ages of the larvae may preclude sex sorting for experimental balancing as stated by the authors.

    - The reported results may have been influenced by the loss or overexpression of galanin or loss of galr1a during developmental stages. The authors did attempt to use the hsp70l system to overexpress galanin, but noted that the heat shock induction step led to reduced brain activity on its own (Supplementary Figure 1). Their hsp70l:gal model shows galanin overexpression anyways (8x fold) regardless of heat induction, so this model is still useful as a way to overexpress galanin, but it should be noted that this galanin overexpression is not restricted to post-developmental timepoints and is present during development.

  4. Reviewer #3 (Public Review):

    Summary:

    The neuropeptide galanin is primarily expressed in the hypothalamus and has been shown to play critical roles in homeostatic functions such as arousal, sleep, stress, and brain disorders such as epilepsy. Previous work in rodents using galanin analogs and receptor-specific knockout has provided convincing evidence for the anti-convulsant effects of galanin.

    In the present study, the authors sought to determine the relationship between galanin expression and whole-brain activity. The authors took advantage of the transparent nature of larval zebrafish to perform whole-brain neural activity measurements via widefield calcium imaging. Two models of seizures were used (eaat2a-/- and pentylenetetrazol; PTZ). In the eaat2a-/- model, spontaneous seizures occur and the authors found that galanin transcript levels were significantly increased and associated with a reduced frequency of calcium events. Similarly, two hours after PTZ galanin transcript levels roughly doubled and the frequency and amplitude of calcium events were reduced. The authors also used a heat shock protein line (hsp70I:gal) where galanin transcript levels are induced by activation of heat shock protein, but this line also shows higher basal transcript levels of galanin. Again, the higher level of galanin in hsp70I:gal larval zebrafish resulted in a reduction of calcium events and a reduction in the amplitude of events. In contrast, galanin knockout (gal-/-) increased calcium activity, indicated by an increased number of calcium events, but a reduction in amplitude and duration. Knockout of the galanin receptor subtype galr1a via crispants also increased the frequency of calcium events.

    In subsequent experiments in eaat2a-/- mutants were crossed with hsp70I:gal or gal-/- to increase or decrease galanin expression, respectively. These experiments showed modest effects, with eaat2a-/- x gal-/- knockouts showing an increased normalized area under the curve and seizure amplitude.

    Lastly, the authors attempted to study the relationship between galanin and brain activity during a PTZ challenge. The hsp70I:gal larva showed an increased number of seizures and reduced seizure duration during PTZ. In contrast, gal-/- mutants showed an increased normalized area under the curve and a stark reduction in the number of detected seizures, a reduction in seizure amplitude, but an increase in seizure duration. The authors then ruled out the role of Galr1a in modulating this effect during PTZ, since the number of seizures was unaffected, whereas the amplitude and duration of seizures were increased.

    Strengths:

    (1) The gain- and loss-of function galanin manipulations provided convincing evidence that galanin influences brain activity (via calcium imaging) during interictal and/or seizure-free periods. In particular, the relationship between galanin transcript levels and brain activity in Figures 1 & 2 was convincing.

    (2) The authors use two models of epilepsy (eaat2a-/- and PTZ).

    (3) Focus on the galanin receptor subtype galr1a provided good evidence for the important role of this receptor in controlling brain activity during interictal and/or seizure-free periods.

    Weaknesses:

    (1) Although the relationship between galanin and brain activity during interictal or seizure-free periods was clear, the manuscript currently lacks mechanistic insight in the role of galanin during seizure-like activity induced by PTZ.

    (2) Calcium imaging is the primary data for the paper, but there are no representative time-series images or movies of GCaMP signal in the various mutants used.

    (3) For Figure 3, the authors suggest that hsp70I:gal x eaat2a-/-mutants would further increase galanin transcript levels, which were hypothesized to further reduce brain activity. However, the authors failed to measure galanin transcript levels in this cross to show that galanin is actually increased more than the eaat2a-/- mutant or the hsp70I:gal mutant alone.

    (4) Similarly, transcript levels of galanin are not provided in Figure 2 for Gal-/- mutants and galr1a KOs. Transcript levels would help validate the knockout and any potential compensatory effects of subtype-specific knockout.

    (5) The authors very heavily rely on calcium imaging of different mutant lines. Additional methods could strengthen the data, translational relevance, and interpretation (e.g., acute pharmacology using galanin agonists or antagonists, brain or cell recordings, biochemistry, etc).

  5. Author response:

    Reviewer #1 (Public Review):

    Summary:

    In this study, the authors explored how galanin affects whole-brain activity in larval zebrafish using wide-field Ca2+ imaging, genetic modifications, and drugs that increase brain activity. The authors conclude that galanin has a sedative effect on the brain under normal conditions and during seizures, mainly through the galanin receptor 1a (galr1a). However, acute "stressors(?)" like pentylenetetrazole (PTZ) reduce galanin's effects, leading to increased brain activity and more seizures. The authors claim that galanin can reduce seizure severity while increasing seizure occurrence, speculated to occur through different receptor subtypes. This study confirms galanin's complex role in brain activity, supporting its potential impact on epilepsy.

    Strengths:

    The overall strength of the study lies primarily in its methodological approach using whole-brain Calcium imaging facilitated by the transparency of zebrafish larvae. Additionally, the use of transgenic zebrafish models is an advantage, as it enables genetic manipulations to investigate specific aspects of galanin signaling. This combination of advanced imaging and genetic tools allows for addressing galanin's role in regulating brain activity.

    Weaknesses:

    The weaknesses of the study also stem from the methodological approach, particularly the use of whole-brain Calcium imaging as a measure of brain activity. While epilepsy and seizures involve network interactions, they typically do not originate across the entire brain simultaneously. Seizures often begin in specific regions or even within specific populations of neurons within those regions. Therefore, a whole-brain approach, especially with Calcium imaging with inherited limitations, may not fully capture the localized nature of seizure initiation and propagation, potentially limiting the understanding of Galanin's role in epilepsy.

    Furthermore, Galanin's effects may vary across different brain areas, likely influenced by the predominant receptor types expressed in those regions. Additionally, the use of PTZ as a "stressor" is questionable since PTZ induces seizures rather than conventional stress. Referring to seizures induced by PTZ as "stress" might be a misinterpretation intended to fit the proposed model of stress regulation by receptors other than Galanin receptor 1 (GalR1).

    The description of the EAAT2 mutants is missing crucial details. EAAT2 plays a significant role in the uptake of glutamate from the synaptic cleft, thereby regulating excitatory neurotransmission and preventing excitotoxicity. Authors suggest that in EAAT2 knockout (KO) mice galanin expression is upregulated 15-fold compared to wild-type (WT) mice, which could be interpreted as galanin playing a role in the hypoactivity observed in these animals.

    Indeed, our observation of the unexpected hypoactivity in EAAT2a mutants, described in our description of this mutant (Hotz et al., 2022), prompted us to initiate this study formulating the hypothesis that the observed upregulation of galanin is a neuroprotective response to epilepsy.

    However, the study does not explore the misregulation of other genes that could be contributing to the observed phenotype. For instance, if AMPA receptors are significantly downregulated, or if there are alterations in other genes critical for brain activity, these changes could be more important than the upregulation of galanin. The lack of wider gene expression analysis leaves open the possibility that the observed hypoactivity could be due to factors other than, or in addition to, galanin upregulation.

    We have performed a transcriptome analysis that we are still evaluation. We can already state that AMPA receptor genes are not significantly altered in the mutant.

    Moreover, the observation that in double KO mice for both EAAT2 and galanin, there was little difference in seizure susceptibility compared to EAAT2 KO mice alone further supports the idea that galanin upregulation might not be the reason for the observed phenotype. This indicates that other regulatory mechanisms or gene expressions might be playing a more pivotal role in the manifestation of hypoactivity in EAAT2 mutants.

    We agree that upregulation of galanin transcripts is at best one of a suite of regulatory mechanisms that lead to hypoactivity in EAAT2 zebrafish mutants.

    These methodological shortcomings and conceptual inconsistencies undermine the perceived strengths of the study, and hinders understanding of Galanin's role in epilepsy and stress regulation.

    Reviewer #2 (Public Review):

    Summary:

    This study is an investigation of galanin and galanin receptor signaling on whole-brain activity in the context of recurrent seizure activity or under homeostatic basal conditions. The authors primarily use calcium imaging to observe whole-brain neuronal activity accompanied by galanin qPCR to determine how manipulations of galanin or the galr1a receptor affect the activity of the whole-brain under non-ictal or seizure event conditions. The authors' Eaat2a-/- model (introduced in their Glia 2022 paper, PMID 34716961) that shows recurrent seizure activity alongside suppression of neuronal activity and locomotion in the time periods lacking seizures is used in this paper in comparison to the well-known pentylenetetrazole (PTZ) pharmacological model of epilepsy in zebrafish. Given the literature cited in their Introduction, the authors reasonably hypothesize that galanin will exert a net inhibitory effect on brain activity in models of epilepsy and at homeostatic baseline, but were surprised to find that this hypothesis was only moderately supported in their Eaat2a-/- model. In contrast, under PTZ challenge, fish with galanin overexpression showed increased seizure number and reduced duration while fish with galanin KO showed reduced seizure number and increased duration. These results would have been greatly enriched by the inclusion of behavioral analyses of seizure activity and locomotion (similar to the authors' 2022 Glia paper and/or PMIDs 15730879, 24002024). In addition, the authors have not accounted for sex as a biological variable, though they did note that sex sorting zebrafish larvae precludes sex selection at the younger ages used. It would be helpful to include smaller experiments taken from pilot experiments in older, sex-balanced groups of the relevant zebrafish to increase confidence in the findings' robustness across sexes. A possible major caveat is that all of the various genetic manipulations are non-conditional as performed, meaning that developmental impacts of galanin overexpression or galanin or galr1a knockout on the observed results have not been controlled for and may have had a confounding influence on the authors' findings. Overall, this study is important and solid (yet limited), and carries clear value for understanding the multifaceted functions that neuronal galanin can have under homeostatic and disease conditions.

    Strengths:

    • The authors convincingly show that galanin is upregulated across multiple contexts that feature seizure activity or hyperexcitability in zebrafish, and appears to reduce neuronal activity overall, with key identified exceptions (PTZ model).

    - The authors use both genetic and pharmacological models to answer their question, and through this diverse approach, find serendipitous results that suggest novel underexplored functions of galanin and its receptors in basal and disease conditions. Their question is well-informed by the cited literature, though the authors should cite and consider their findings in the context of Mazarati et al., 1998 (PMID:982276). The authors' Discussion places their findings in context, allowing for multiple interpretations and suggesting some convincing explanations.

    - Sample sizes are robust and the methods used are well-characterized, with a few exceptions (as the paper is currently written).

    - Use of a glutamatergic signaling-based genetic model of epilepsy (Eaat2a-/-) is likely the most appropriate selection to test how galanin signaling can alter seizure activity, as galanin is known to reduce glutamatergic release as an inhibitory mechanism in rodent hippocampal neurons via GalR1a (alongside GIRK activation effects). Given that PTZ instead acts through GABAergic signaling pathways, it is reasonable and useful to note that their glutamate-based genetic model showed different effects than did their GABAergic-based model of seizure activity.

    Weaknesses:

    • The authors do not include behavioral assessments of seizure or locomotor activity that would be expected in this paper given their characterizations of their Eaat2a-/- model in the Glia 2022 paper that showed these behavioral data for this zebrafish model. These data would inform the reader of the behavioral phenotypes to expect under the various conditions and would likely further support the authors' findings if obtained and reported.

    We agree that a thorough behavioral assessment would have strengthened the study, but we deemed it outside of the scope of this study.

    - No assessment of sex as a biological variable is included, though it is understood that these specific studied ages of the larvae may preclude sex sorting for experimental balancing as stated by the authors.

    The study was done on larval zebrafish (5 days post fertilization). The first signs of sexual differentiation become apparent at about 17 days post fertilization (reviewed in Ye and Chen, 2020). Hence sex is no biological variable at the stage studied.

    - The reported results may have been influenced by the loss or overexpression of galanin or loss of galr1a during developmental stages. The authors did attempt to use the hsp70l system to overexpress galanin, but noted that the heat shock induction step led to reduced brain activity on its own (Supplementary Figure 1). Their hsp70l:gal model shows galanin overexpression anyways (8x fold) regardless of heat induction, so this model is still useful as a way to overexpress galanin, but it should be noted that this galanin overexpression is not restricted to post-developmental timepoints and is present during development.

    The developmental perspective is an important point to consider. Due to the rapid development of the zebrafish it is not trivial to untangle this. In the zebrafish we first observe epileptic seizures as early as 3 days post fertilization (dpf), where the brain is clearly not well developed yet (e.g. behavioral response to light are still minimal). Even the 5 dpf stage, where most of our experiments have been conducted, cannot by far not be considered post-development.

    Reviewer #3 (Public Review):

    Summary:

    The neuropeptide galanin is primarily expressed in the hypothalamus and has been shown to play critical roles in homeostatic functions such as arousal, sleep, stress, and brain disorders such as epilepsy. Previous work in rodents using galanin analogs and receptor-specific knockout has provided convincing evidence for the anti-convulsant effects of galanin.

    In the present study, the authors sought to determine the relationship between galanin expression and whole-brain activity. The authors took advantage of the transparent nature of larval zebrafish to perform whole-brain neural activity measurements via widefield calcium imaging. Two models of seizures were used (eaat2a-/- and pentylenetetrazol; PTZ). In the eaat2a-/- model, spontaneous seizures occur and the authors found that galanin transcript levels were significantly increased and associated with a reduced frequency of calcium events. Similarly, two hours after PTZ galanin transcript levels roughly doubled and the frequency and amplitude of calcium events were reduced. The authors also used a heat shock protein line (hsp70I:gal) where galanin transcript levels are induced by activation of heat shock protein, but this line also shows higher basal transcript levels of galanin. Again, the higher level of galanin in hsp70I:gal larval zebrafish resulted in a reduction of calcium events and a reduction in the amplitude of events. In contrast, galanin knockout (gal-/-) increased calcium activity, indicated by an increased number of calcium events, but a reduction in amplitude and duration. Knockout of the galanin receptor subtype galr1a via crispants also increased the frequency of calcium events.

    In subsequent experiments in eaat2a-/- mutants were crossed with hsp70I:gal or gal-/- to increase or decrease galanin expression, respectively. These experiments showed modest effects, with eaat2a-/- x gal-/- knockouts showing an increased normalized area under the curve and seizure amplitude.

    Lastly, the authors attempted to study the relationship between galanin and brain activity during a PTZ challenge. The hsp70I:gal larva showed an increased number of seizures and reduced seizure duration during PTZ. In contrast, gal-/- mutants showed an increased normalized area under the curve and a stark reduction in the number of detected seizures, a reduction in seizure amplitude, but an increase in seizure duration. The authors then ruled out the role of Galr1a in modulating this effect during PTZ, since the number of seizures was unaffected, whereas the amplitude and duration of seizures were increased.

    Strengths:

    (1) The gain- and loss-of function galanin manipulations provided convincing evidence that galanin influences brain activity (via calcium imaging) during interictal and/or seizure-free periods. In particular, the relationship between galanin transcript levels and brain activity in Figures 1 & 2 was convincing.

    (2) The authors use two models of epilepsy (eaat2a-/- and PTZ).

    (3) Focus on the galanin receptor subtype galr1a provided good evidence for the important role of this receptor in controlling brain activity during interictal and/or seizure-free periods.

    Weaknesses:

    (1) Although the relationship between galanin and brain activity during interictal or seizure-free periods was clear, the manuscript currently lacks mechanistic insight in the role of galanin during seizure-like activity induced by PTZ.

    We completely agree and concede that this study constitutes only a first attempt to understand the (at least for us) perplexing complexity of galanin function on the brain.

    (2) Calcium imaging is the primary data for the paper, but there are no representative time-series images or movies of GCaMP signal in the various mutants used.

    We are in the process of preparing some time series images and will include them in the next revision.

    (3) For Figure 3, the authors suggest that hsp70I:gal x eaat2a-/-mutants would further increase galanin transcript levels, which were hypothesized to further reduce brain activity. However, the authors failed to measure galanin transcript levels in this cross to show that galanin is actually increased more than the eaat2a-/- mutant or the hsp70I:gal mutant alone.

    This is an excellent suggestion. We will perform the necessary qPCR experiments and will include the data in the next revision.

    (4) Similarly, transcript levels of galanin are not provided in Figure 2 for Gal-/- mutants and galr1a KOs. Transcript levels would help validate the knockout and any potential compensatory effects of subtype-specific knockout.

    (5) The authors very heavily rely on calcium imaging of different mutant lines. Additional methods could strengthen the data, translational relevance, and interpretation (e.g., acute pharmacology using galanin agonists or antagonists, brain or cell recordings, biochemistry, etc).

    Again, we agree and concede that a number of additional approaches are needed to get more insight into the complex role of galanin in regulation overall brain activity. These include, among others, also behavioral, multiple single cell recordings and pharmacological interventions.