Merging Multi-OMICs with Proteome Integral Solubility Alteration Unveils Antibiotic Mode of Action

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This fundamental study provides insights into how pathogens respond, on a systemic level including several gene targets and clusters, to selected antimicrobial molecules. Compelling evidence is provided, through multi-omics and functional approaches, that very similar molecules originally designed to target the same bacterial protein act differently within the context of the whole set of cellular transcripts, expressed proteins, and pre-lethal metabolic changes. Given the incredibly fast accumulation of omics data to date and the much slower capacity of extracting biologically relevant insights from big data, this work exemplifies how the development of sensitive data analysis is still a major necessity in modern research.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like Helicobacter pylori, the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity. However, the application of bulk omics approaches for unraveling drug molecular mechanisms of action is limited by their inability to discriminate between target-specific modifications and off-target effects. This study introduces a multi-omics method to overcome the existing limitation. For the first time, the PISA assay is utilized in bacteria in the PISA-express format to link proteome solubility with different and potentially immediate responses to drug treatment, enabling us the resolution to understand target-specific modifications and off-target effects. This study introduces a comprehensive method for understanding drug mechanisms and optimizing the development of multi-targeting antimicrobial therapies.

Article activity feed

  1. eLife assessment

    This fundamental study provides insights into how pathogens respond, on a systemic level including several gene targets and clusters, to selected antimicrobial molecules. Compelling evidence is provided, through multi-omics and functional approaches, that very similar molecules originally designed to target the same bacterial protein act differently within the context of the whole set of cellular transcripts, expressed proteins, and pre-lethal metabolic changes. Given the incredibly fast accumulation of omics data to date and the much slower capacity of extracting biologically relevant insights from big data, this work exemplifies how the development of sensitive data analysis is still a major necessity in modern research.

  2. Reviewer #1 (Public Review):

    In this manuscript, entitled " Merging Multi-OMICs with Proteome Integral Solubility Alteration Unveils Antibiotic Mode of Action", Dr. Maity and colleagues aim to elucidate the mechanisms of action of antibiotics through combined approaches of omics and the PISA tool to discover new targets of five drugs developed against Helicobacter pylori.

    Strengths:

    Using transcriptomics, proteomic analysis, protein stability (PISA), and integrative analysis, Dr. Maity and colleagues have identified pathways targeted by five compounds initially discovered as inhibitors against H. pylori flavodoxin. This study underscores the necessity of a global approach to comprehensively understanding the mechanisms of drug action. The experiments conducted in this paper are well-designed and the obtained results support the authors' conclusions.

    Weaknesses:

    This manuscript describes several interesting findings. A few points listed below require further clarification:

    (1) Compounds IVk exhibits markedly different behavior compared to the other compounds. The authors are encouraged to discuss these findings in the context of existing literature or chemical principles.

    (2) The incubation time for treating H. pylori with the drugs was set at 4 hours for transcriptomic and proteomic analyses, compared to 20 min for PISA analysis. The authors need to explain the reason for these differences in treatment duration.

    (3) The PISA method facilitates the identification of proteins stabilized by drug treatment. DnaJ and Trigger factor (tig), well-known molecular chaperones, prevent protein aggregation under stress. Their enrichment in the soluble fraction is expected and does not necessarily indicate direct stabilization by the drugs. The possibility that their stabilization results from binding to other proteins destabilized by the drugs should be considered. To prevent any misunderstanding, the authors should clarify that their methodology does not solely identify direct targets. Instead, the combination of their findings sheds light on various pathways affected by the treatment.

    (4) At the end of the manuscript, the authors conclude that four compounds "strongly interact with CagA". However, detailed molecule/protein interaction studies are necessary to definitively support this claim. The authors should exercise caution in their statement. As the authors mentioned, additional research (not mandated in the scope of this current paper) is necessary to determine the drug's binding affinity to the proposed targets.

    (5) The authors should clarify the PISA-Express approach over standard PISA. A detailed explanation of the differences between both methods in the main text is important.

  3. Reviewer #2 (Public Review):

    Summary:

    This work has an important and ambitious goal: understanding the effects of drugs, in this case antimicrobial molecules, from a holistic perspective. This means that the effect of drugs on a group of genes and whole metabolic pathways is unveiled, rather than its immediate effect on a protein target only. To achieve this goal the authors successfully implement the PISA-Express method (Protein Integral Solubility Alteration), using combined transcriptomics, proteomics, and drug-induced changes in protein stability to retrieve a large number of genes and proteins affected by the used compounds. The compounds used in the study (compound IVa, IVb, IVj, and IVk) were all derived from the precursors compound IV, they are effective against Helicobacter pylori, and their mode of action on clusters of genes and proteins has been compared to the one of the known pylori drug metronidazole (MNZ). Due to this comparison, and confirmed by the diversity of responses induced by these very similar compounds, it can be understood that the approach used is reliable and very informative. Notably, although all compound IV derivatives were designed to target pylori Flavodoxin (Fld), only one showed a statistically significant shift of Fld solubility (compound IVj, FIG S11). For most other compounds, instead, the involvement of other possible targets affecting diverse metabolic pathways was also observed, notably concerning a series of genes with other important functions: CagA (virulence factor), FtsY/FtsA (cell division), AtpD (ATP-synthase complex), the essential GTPase ObgE, Tig (protein export), as well as other proteins involved in ribosomal synthesis, chemotaxis/motility and DNA replication/repairs. Finally, for all tested molecules, in vivo functional data have been collected that parallel the omics predictions, comforting them and showing that compound IV derivatives differently affect cellular generation of reactive oxygen species (ROS), oxygen consumption rates (OCR), DNA damage, and ATP synthesis.

    Strengths:

    The approach used is very potent in retrieving the effects of chemically active molecules (in this case antimicrobial ones) on whole cells, evidencing protein and gene networks that are involved in cell sensitivity to the studied molecules. The choice of these compounds against H. pylori is perfect, showcasing how different the real biological response is, compared to the hypothetical one. In fact, although all molecules were retrieved based on their activity on Fld, the authors unambiguously show that large unexpected gene clusters may, and in fact are, affected by these compounds, and each of them in different manners.

    Impact:

    The present work is the first report relying on PISA-Express performed on living bacterial cells. Because of its findings, this work will certainly have a high impact on the way we design research to develop effective drugs, allowing us to understand the fine effects of a drug on gene clusters, drive molecule design towards specific metabolic pathways, and eventually better plan the combination of multiple active molecules for drug formulation. Beyond this, however, we expect this article to impact other related and unrelated fields of research as well. The same holistic approaches might also allow gaining deep, and sometimes unexpected, insight into the cellular targets involved in drug side effects, drug resistance, toxicity, and cellular adaptation, in fields beyond the medicinal one, such as cellular biology and environmental studies on pollutants.