SUMO’s intrinsically disordered N-terminus is an intramolecular inhibitor of SUMO - SIM interactions

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This work demonstrates an important regulatory role of the N-terminal disordered tail of small ubiquitin-like modifier (SUMO) proteins, which modulates the function of a variety of proteins in eukaryotic cells. The authors present convincing evidence that the N-terminal region of SUMO inhibits its own interaction with downstream effector proteins and SUMOylation targets. This new discovery significantly advances the field by providing a possible explanation of how SUMO paralogues select their effectors and SUMOylation targets.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Small Ubiquitin-related modifiers of the SUMO family regulate thousands of proteins in eukaryotic cells. Many SUMO substrates, effectors and enzymes carry short motifs (SIMs) that mediate low affinity interactions with SUMO proteins. This raises the question how specificity is achieved in target selection, SUMO paralogue choice and SUMO-dependent interactions. A unique but poorly understood feature of SUMO proteins is their intrinsically disordered N-terminus. We reveal a function for N-termini of human, C. elegans, and yeast SUMO proteins as intramolecular inhibitors of SUMO-SIM interactions. Mutational analyses, NMR spectroscopy, and Molecular Dynamics simulations indicate that SUMO’s N-terminus can inhibit SIM binding by fast and fuzzy interactions with SUMO‘s core. Deletion of the C. elegans SUMO1 N-terminus leads to p53-dependent apoptosis during germline development, indicating an important role of SUMO’s N-termini in DNA damage repair. Our findings reveal a mechanism of disorder-based autoinhibition that contributes to the specificity of SUMOylation and SUMO-dependent interactions.

Article activity feed

  1. eLife assessment

    This work demonstrates an important regulatory role of the N-terminal disordered tail of small ubiquitin-like modifier (SUMO) proteins, which modulates the function of a variety of proteins in eukaryotic cells. The authors present convincing evidence that the N-terminal region of SUMO inhibits its own interaction with downstream effector proteins and SUMOylation targets. This new discovery significantly advances the field by providing a possible explanation of how SUMO paralogues select their effectors and SUMOylation targets.

  2. Reviewer #1 (Public Review):

    Summary:

    SUMO proteins are processed and then conjugated to other proteins via a C-terminal di-glycine motif. In contrast, the N-terminus of some SUMO proteins (SUMO2/3) contains lysine residues that are important for the formation of SUMO chains. Using NMR studies, the N-terminus of SUMO was previously reported to be flexible (Bayer et al., 1998). The authors are investigating the role of the flexible (referred to as intrinsically disordered) N-terminus of several SUMO proteins. They report their findings and modeling data that this intrinsically disordered N-terminus of SUMO1 (and the C. elegans Smo1) regulates the interaction of SUMO with SUMO interacting motifs (SIMs).

    Strengths:

    Among the strongest experimental data suggesting that the N-terminus plays an inhibitory function are their observations that
    (1) SUMO1∆N19 binds more efficiently to SIM-containing Usp25, Tdp2, and RanBp2,
    (2) SUMO1∆N19 shows improved sumoylation of Usp25,
    (3) changing negatively-charged residues, ED11,12KK in the SUMO1 N-terminus increased the interaction and sumoylation with/of USP25.

    The paper is very well-organized, clearly written, and the experimental data are of high quality. There is good evidence that the N-terminus of SUMO1 plays a role in regulating its binding and conjugation to SIM-containing proteins. Therefore, the authors are presenting a new twist in the ever-evolving saga of SUMO, SIMs, and sumoylation.

    Weaknesses:

    Much has been learned about SUMO through structure-function analyses and this study is another excellent example. I would like to suggest that the authors take some extra time to place their findings into the context of previous SUMO structure-function analyses. Furthermore, it would be fitting to place their finding of a potential role of N-terminally truncated Smo1 into the context of the many prior findings that have been made with regard to the C. elegans SUMO field. Finally, regarding their data modeling/simulation, there are questions regarding the data comparisons and whether manipulations of the N-terminus also have an effect on the 70/80 region of the core.

  3. Reviewer #2 (Public Review):

    Summary:

    This very interesting study originated from a serendipitous observation that the deletion of the disordered N-terminal tail of human SUMO1 enhances its binding to its interaction partners. This suggested that the N terminus of SUMO1 might be an intrinsic competitive inhibitor of SUMO-interacting motif (SIM) binding to SUMO1. Subsequent experiments support this mechanism, showing that in humans it is specific to SUMO1 and does not extend to SUMO2 or SUMO3 (except, perhaps, when the N terminus of SUMO2 becomes phosphorylated, as the authors intriguingly suggest - and partially demonstrate). The auto-inhibition of SUMO1 via its N-terminal tail apparently explains the lower binding of SUMO1 compared to SUMO2 to some SIMs and lower SIM-dependent SUMOylation of some substrates with SUMO1 compared to SUMO2, thus adding an important element to the puzzle of SUMO paralogue preference. In line with this explanation, N-terminally truncated SUMO1 was equally efficient to SUMO2 in the studied cases. The inhibitory role of SUMO1's N terminus appears conserved in other species including S. cerevisiae and C. elegans, both of which contain only one SUMO. The study also elucidates the molecular mechanism by which the disordered N-terminal region of SUMO1 can exert this auto-inhibitory effect. This appears to depend on the transient, very highly dynamic physical interaction between the N terminus and the surroundings of the SIM-binding groove based mostly on electrostatic interactions between acidic residues in the N terminus and basic residues around the groove.

    Strengths:

    A key strength of this study is the interplay of different techniques, including biochemical experiments, NMR, molecular dynamics simulations, and, at the end, in vivo experiments. The experiments performed with these different techniques inform each other in a productive way and strengthen each others' conclusions. A further strength is the detailed and clear text, which patiently introduces, describes, and discusses the study. Finally, in terms of the message, the study has a clear, mechanistic message of fundamental importance for various aspects of the SUMO field, and also more generally for protein biochemists interested in the functional importance of intrinsically disordered regions.

    Weaknesses:

    Some of the authors' conclusions are similar to those from a recent study by Lussier-Price et al. (NAR, 2022), the two studies likely representing independent inquiries into a similar topic. I don't see it as a weakness by itself (on the contrary), but it seems like a lost opportunity not to discuss at more length the congruence between these two studies in the discussion (Lussier-Price is only very briefly cited). Another point that can be raised concerns the wording of conclusions from molecular dynamics. The use of molecular dynamics simulations in this study has been rigorous and fruitful - indeed, it can be a model for such studies. Nonetheless, parameters derived from molecular dynamics simulations, including kon and koff values, could be more clearly described as coming from simulations and not experiments. Lastly, some of the conclusions - such as enhanced binding to SIM-containing proteins upon N-terminal deletion - could be additionally addressed with a biophysical technique (e.g. ITC) that is more quantitative than gel-based pull-down assays - but I don't think it is a must.