Visuo-motor updating in autism symptomatology

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This important study tests the hypothesis that a high autism quotient in neurotypical adults is strongly associated with suboptimal motor planning and visual updating after eye movements, which in turn, is related to a disrupted efference copy mechanism. The implication is that such abnormal behavior would be exaggerated in those with ASD and may contribute to sensory overload - a key symptom in this condition. The evidence presented is convincing, with significant effects in both visual and motor domains, adequate sample sizes, and consideration of alternatives. However, the study would be strengthened with minor but necessary corrections to methods and statistics, as well as a moderation of claims regarding direct application to ASD in the absence of testing such patients.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Autism Spectrum Disorder (ASD) presents a range of challenges, including heightened sensory sensitivities. Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms, which predict the sensory outcomes of self-generated actions, such as eye movements. Efference copies play a vital role in maintaining visual and motor stability. Disrupted efference copies hinder precise predictions, leading to increased reliance on actual feedback and potential distortions in perceptions across eye movements. In our first experiment, we tested how well individuals with varying levels of autistic traits updated their mental map after making eye movements. We found that those with more autistic traits had difficulty using information from their eye movements to update the spatial representation of their mental map, resulting in significant errors in object localization. In the second experiment, we looked at how participants perceived an object displacement after making eye movements. Using a trans-saccadic spatial updating task, we found that those with higher autism scores exhibited a greater bias, indicating under-compensation of eye movements and a failure to maintain spatial stability during saccades. Overall, our study underscores efference copy’s vital role in visuo-motor stability, aligning with Bayesian theories of autism, potentially informing interventions for improved action-perception integration in autism.

Article activity feed

  1. eLife assessment

    This important study tests the hypothesis that a high autism quotient in neurotypical adults is strongly associated with suboptimal motor planning and visual updating after eye movements, which in turn, is related to a disrupted efference copy mechanism. The implication is that such abnormal behavior would be exaggerated in those with ASD and may contribute to sensory overload - a key symptom in this condition. The evidence presented is convincing, with significant effects in both visual and motor domains, adequate sample sizes, and consideration of alternatives. However, the study would be strengthened with minor but necessary corrections to methods and statistics, as well as a moderation of claims regarding direct application to ASD in the absence of testing such patients.

  2. Reviewer #1 (Public Review):

    Summary:
    This study examines a hypothesized link between autism symptomatology and efference copy mechanisms. This is an important question for several reasons. Efference copy is both a critical brain mechanism that is key to rapid sensorimotor behaviors, and one that has important implications for autism given recent empirical and theoretical work implicating atypical prediction mechanisms and atypical reliance on priors in ASD.

    The authors test this relationship in two different experiments, both of which show larger errors/biases in spatial updating for those with heightened autistic traits (as measured by AQ in neurotypical (NT) individuals).

    Strengths:
    The empirical results are convincing - effects are strong, sample sizes are sufficient, and the authors also rule out alternative explanations (ruling out differences in motor behavior or perceptual processing per se).

    Weaknesses:
    My main concern is that the paper should be more transparent about both (1) that this study does not include individuals with autism, and (2) acknowledging the limitations of the AQ.

    On the first point, and I don't think this is intentional, there are several instances where the line between heightened autistic traits in the NT population and ASD is blurred or absent. For example, in the second sentence of the abstract, the authors state "Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms". I would say this is not correct because the authors did not test individuals with ASD. I don't see a problem with using ASD to motivate and discuss this work, but it should be clear in key places that this was done using AQ in NT individuals.

    For the second issue, the AQ measure itself has some problems. For example, reference 38 in the paper (a key paper on AQ) also shows that those with high AQ skew more male than modern estimates of ASD, suggesting that the AQ may not fully capture the full spectrum of ASD symptomatology. Of course, this does not mean that the AQ is not a useful measure (the present data clearly show that it captures something important about spatial updating during eye movements), but it should not be confused with ASD, and its limitations need to be acknowledged. My recommendation would be to do this in the title as well - e.g. note impaired visuomotor updating in individuals with "heightened autistic traits".

    Suggestions for improvement:
    - Figure 5 is really interesting. I think it should be highlighted a bit more, perhaps even with a model that uses the results of both tasks to predict AQ scores.
    - Some discussion of the memory demands of the tasks will be helpful. The authors argue that memory is not a factor, but some support for this is needed.
    - With 3 sessions for each experiment, the authors also have data to look at learning. Did people with high AQ get better over time, or did the observed errors/biases persist throughout the experiment?

  3. Reviewer #2 (Public Review):

    Summary:
    The idea that various clinical conditions may be associated, at least partially, with a disrupted corollary discharge mechanism has been present for a long time.

    In this paper, the authors draw a link between sensory overload, a characteristic of autism spectrum disorder, and a disturbance in the corollary discharge mechanism. The authors substantiate their hypothesis with strong evidence from both the motor and perceptual domains. As a result, they broaden the clinical relevance of the corollary discharge mechanism to encompass autism spectrum disorder.

    The authors write:
    "Imagine a scenario in which you're watching a video of a fast-moving car on a bumpy road. As the car hits a pothole, your eyes naturally make quick, involuntary saccades to keep the car in your visual field. Without a functional efference copy system, your brain would have difficulty accurately determining the current position of your eye in space, which in turn affects its ability to anticipate where the car should appear after each eye movement."

    I appreciate the use of examples to clarify the concept of efference copy. However, I believe this example is more related to a gain-field mechanism, informing the system about the position of the eye with respect to the head, rather than an example of efference copy per se.

    Without an efference copy mechanism, the brain would have trouble accurately determining where the eyes will be in space after an eye movement, and it will have trouble predicting the sensory consequences of the eye movement. However it can be argued that the gain-field mechanism would be sufficient to inform the brain about the current position of the eyes with respect to the head.

    The authors write:
    "In the double-step paradigm, two consecutive saccades are made to briefly displayed targets 21, 22. The first saccade occurs without visual references, relying on internal updating to determine the eye's position."

    Maybe I have missed something, but in the double-step paradigm the first saccade can occur without the help of visual references if no visual feedback is present, that is, when saccades are performed in total darkness. Was this the case for this experiment? I could not find details about room conditions in the methods. Please provide further details.

    In case saccades were not performed in total darkness, then the first saccade can be based on the remembered location of the first target presented, which can be derived from the retinotopic trace of the first stimuli, as well as the contribution from the surroundings, that is: the remembered relative location of the first target with respect to the screen border along the horizontal meridian (i.e. allocentric cues).

    A similar logic could be applied to the second saccade. If the second saccade were based only on the retinotopic trace, without updating, then it would go up and 45 deg to the right, based on the example shown in Figure 1. With appropriate updating, the second saccade would go straight up. However, if saccades were not performed in total darkness, then the location of the second target could also be derived from its relationship with the surroundings (for example, the remembered distance from screen borders, i.e. allocentric cues).

    If saccades were not performed in total darkness, the results shown in Figures 2 and 3 could then be related to i) differences in motor updating between AQ score groups; ii) differences in the use of allocentric cues between AQ score groups; iii) a combination of i) and ii). I believe this is a point worth mentioning in the discussion."

    The authors write:
    "According to theories of saccadic suppression, an efference copy is necessary to predict the occurrence of a saccade."

    I would also refer to alternative accounts, where saccadic suppression appears to arise as early as the retina, due to the interaction between the visual shift introduced by the eye movement, and the retinal signal associated with the probe used to measure saccadic suppression. This could potentially account for the scaling of saccadic suppression magnitude with saccade amplitude.

    Idrees, S., Baumann, M.P., Franke, F., Münch, T.A. and Hafed, Z.M., 2020. Perceptual saccadic suppression starts in the retina. Nature communications, 11(1), p.1977.

  4. Reviewer #3 (Public Review):

    Summary:
    This work examined efference copy related to eye movements in healthy adults who have high autistic traits. Efference copies allow the brain to make predictions about sensory outcomes of self-generated actions, and thus serve important roles in motor planning and maintaining visual stability. Consequently, disrupted efference copies have been posited as a potential mechanism underlying motor and sensory symptoms in psychopathology such as Autism Spectrum Disorder (ASD), but so far very few studies have directly investigated this theory. Therefore, this study makes an important contribution as an attempt to fill in this knowledge gap. The authors conducted two eye-tracking experiments examining the accuracy of motor planning and visual perception following a saccade and found that participants with high autistic traits exhibited worse task performance (i.e., less accurate second saccade and biased perception of object displacement), consistent with their hypothesis of less impact of efference copies on motor and visual updating. Moreover, the motor and visual biases are positively correlated, indicative of a common underlying mechanism. These findings are promising and can have important implications for clinical intervention if they can be replicated in a clinical sample.

    Strengths:
    The authors utilized well-established and rigorously designed experiments and sound analytic methods. This enables easy translations between similar work in non-human primates and humans and readily points to potential candidates for underlying neural circuits that could be further examined in follow-up studies (e.g., superior colliculus, frontal eye fields, mediodorsal thalamus). The finding of no association between initial saccade accuracy and level of autistic trait in both experiments also serves as an important control analysis and increases one's confidence in the conclusion that the observed differences in task performance were indeed due to disrupted efference copies, not confounding factors such as basic visual/motor deficits or issues with working memory. The strong correlation between the observed motor and visual biases further strengthens the claim that the findings from both experiments may be explained by the same underlying mechanism - disrupted efference copies. Lastly, the authors also presented a thoughtful and detailed mechanistic theory of how efference copy impairment may lead to ASD symptomatology, which can serve as a nice framework for more research into the role of efference copies in ASD.

    Weaknesses:
    Although the paper has a lot of strengths, the main weakness of the paper is that a direct link with ASD symptoms (i.e., sensory overload and motor inflexibility as the authors suggested) cannot be established. First of all, the participants are all healthy adults who do not meet the clinical criteria for an ASD diagnosis. Although they could be considered a part of the broader autism phenotype, the results cannot be easily generalized to the clinical population without further research. Secondly, the measure used to quantify the level of autistic traits, Autistic Quotient (AQ), does not actually capture any sensory or motor symptoms of ASD. Therefore, it is unknown whether those who scored high on AQ in this study experienced high, or even any, sensory or motor difficulties. In other words, more evidence is needed to demonstrate a direct link between disrupted efference copies and sensory/motor symptoms in ASD.