Machine learning approaches identify immunologic signatures of total and intact HIV DNA during long-term antiretroviral therapy

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This useful paper looks for correlations between immunophenotypic markers and several measures of HIV reservoir volume in cross-sectional cohorts of people living with HIV on ART using several bioinformatic and machine-learning tools. The level of evidence linking these variables is incomplete given possible confounding variables, lack of directionality & effect size, and mechanistic basis.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Antiretroviral therapy (ART) halts HIV replication; however, cellular / immue cell viral reservoirs persist despite ART. Understanding the interplay between the HIV reservoir, immune perturbations, and HIV-specific immune responses on ART may yield insights into HIV persistence. A cross-sectional study of peripheral blood samples from 115 people with HIV (PWH) on long-term ART was conducted. High-dimensional immunophenotyping, quantification of HIV-specific T cell responses, and the intact proviral DNA assay (IPDA) were performed. Total and intact HIV DNA was positively correlated with T cell activation and exhaustion. Years of ART and select bifunctional HIV-specific CD4 T cell responses were negatively correlated with the percentage of intact proviruses. A Leave-One-Covariate-Out (LOCO) inference approach identified specific HIV reservoir and clinical-demographic parameters that were particularly important in predicting select immunophenotypes. Dimension reduction revealed two main clusters of PWH with distinct reservoirs. Additionally, machine learning approaches identified specific combinations of immune and clinical-demographic parameters that predicted with approximately 70% accuracy whether a given participant had qualitatively high or low levels of total or intact HIV DNA. The techniques described here may be useful for assessing global patterns within the increasingly high-dimensional data used in HIV reservoir and other studies of complex biology.

Article activity feed

  1. eLife assessment

    This useful paper looks for correlations between immunophenotypic markers and several measures of HIV reservoir volume in cross-sectional cohorts of people living with HIV on ART using several bioinformatic and machine-learning tools. The level of evidence linking these variables is incomplete given possible confounding variables, lack of directionality & effect size, and mechanistic basis.

  2. Reviewer #1 (Public Review):

    Summary:

    Semenova et al. have studied a large cross-sectional cohort of people living with HIV on suppressive ART, N=115, and performed high dimensional flow cytometry to then search for associations between immunological and clinical parameters and intact/total HIV DNA levels.

    A number of interesting data science/ML approaches were explored on the data and the project seems a serious undertaking. However, like many other studies that have looked for these kinds of associations, there was not a very strong signal. Of course, the goal of unsupervised learning is to find new hypotheses that aren't obvious to human eyes, but I felt in that context, there were (1) results slightly oversold, (2) some questions about methodology in terms mostly of reservoir levels, and (3) results were not sufficiently translated back into meaning in terms of clinical outcomes.

    Strengths:

    The study is evidently a large and impressive undertaking and combines many cutting-edge statistical techniques with a comprehensive experimental cohort of people living with HIV, notably inclusive of populations underrepresented in HIV science. A number of intriguing hypotheses are put forward that could be explored further. Sharing the data could create a useful repository for more specific analyses.

    Weaknesses:

    Despite the detailed experiments and methods, there was not a very strong signal for the variable(s) predicting HIV reservoir size. The Spearman coefficients are ~0.3, (somewhat weak, and acknowledged as such) and predictive models reach 70-80% prediction levels, though sometimes categorical variables are challenging to interpret.

    There are some questions about methodology, as well as some conclusions that are not completely supported by results, or at minimum not sufficiently contextualized in terms of clinical significance.

    On associations: the false discovery rate correction was set at 5%, but data appear underdetermined with fewer observations than variables (144vars > 115ppts), and it isn't always clear if/when variables are related (e.g inverses of one another, for instance, %CD4 and %CD8).

    The modeling of reservoir size was unusual, typically intact and defective HIV DNA are analyzed on a log10 scale (both for decays and predicting rebound). Also sometimes in this analysis levels are normalized (presumably to max/min?, e.g. S5), and given the large within-host variation of level we see in other works, it is not trivial to predict any downstream impact of normalization across population vs within-person.

    Also, the qualitative characterization of low/high reservoir is not standard and naturally will split by early/later ART if done as above/below median. Given the continuous nature of these data, it seems throughout that predicting above/below median is a little hard to translate into clinical meaning.

    Lastly, the work is comprehensive and appears solid, but the code was not shared to see how calculations were performed.

  3. Reviewer #2 (Public Review):

    Summary:

    Semenova et. al., performed a cross-sectional analysis of host immunophenotypes (using flow cytometry) and the peripheral CD4+ T cell HIV reservoir size (using the Intact Proviral DNA Assay, IPDA) from 115 people with HIV (PWH) on ART. The study mostly highlights the machine learning methods applied to these host and viral reservoir datasets but fails to interpret these complex analyses into (clinically, biologically) interpretable findings. For these reasons, the direct translational take-home message from this work is lost amidst a large list of findings (shown as clusters of associated markers) and sentences such as "this study highlights the utility of machine learning approaches to identify otherwise imperceptible global patterns" - lead to overinterpretation of their data.

    Strengths:

    Measurement of host immunophenotyping measures (multiparameter flow cytometry) and peripheral HIV reservoir size (IPDA) from 115 PWH on ART.

    Major Weaknesses:

    (1) Overall, there is little to no interpretability of their machine learning analyses; findings appear as a "laundry list" of parameters with no interpretation of the estimated effect size and directionality of the observed associations. For example, Figure 2 might actually give an interpretation of each X increase in immunophenotyping parameter, we saw a Y increase/decrease in HIV reservoir measure.

    (2) The correlations all appear to be relatively weak, with most Spearman R in the 0.30 range or so.

    (3) The Discussion needs further work to help guide the reader. The sentence: "The correlative results from this present study corroborate many of these studies, and provide additional insights" is broad. The authors should spend some time here to clearly describe the prior literature (e.g., describe the strength and direction of the association observed in prior work linking PD-1 and HIV reservoir size, as well as specify which type of HIV reservoir measures were analyzed in these earlier studies, etc.) and how the current findings add to or are in contrast to those prior findings.

    (4) The most interesting finding is buried on page 12 in the Discussion: "Uniquely, however, CD127 expression on CD4 T cells was significantly inversely associated with intact reservoir frequency." The authors should highlight this in the abstract, and title, and move this up in the Discussion. The paper describes a very high dimensional analysis and the key takeaways are not clear; the more the author can point the reader to the take-home points, the better their findings can have translatability to future follow-up mechanistic and/or validation studies.

    (5) The authors should avoid overinterpretation of these results. For example in the Discussion on page 13 "The existence of two distinct clusters of PWH with different immune features and reservoir characteristics could have important implications for HIV cure strategies - these two groups may respond differently to a given approach, and cluster membership may need to be considered to optimize a given strategy." It is highly unlikely that future studies will be performing the breadth of parameters resulting here and then use these directly for optimizing therapy.

    (6) There are only TWO limitations listed here: cross-sectional study design and the use of peripheral blood samples. (The subsequent paragraph notes an additional weakness which is misclassification of intact sequences by IPDA). This is a very limited discussion and highlights the need to more critically evaluate their study for potential weaknesses.

    (7) A major clinical predictor of HIV reservoir size and decay is the timing of ART initiation. The authors should include these (as well as other clinical covariate data - see #12 below) in their analyses and/or describe as limitations of their study.

  4. Reviewer #3 (Public Review):

    Summary:

    This valuable study by Semenova and colleagues describes a large cross-sectional cohort of 115 individuals on ART. Participants contributed a single blood sample which underwent IPDA, and 25-color flow with various markers (pre and post-stimulation). The authors then used clustering, decision tree analyses, and machine learning to look for correlations between these immunophenotypic markers and several measures of HIV reservoir volume. They identified two distinct clusters that can be somewhat differentiated based on total HIV DNA level, intact HIV DNA level, and multiple T cell cellular markers of activation and exhaustion.

    The conclusions of the paper are supported by the data but the relationships between independent and dependent variables in the models are correlative with no mechanistic work to determine causality. It is unclear in most cases whether confounding variables could explain these correlations. If there is causality, then the data is not sufficient to infer directionality (ie does the immune environment impact the HIV reservoir or vice versa or both?). In addition, even with sophisticated and appropriate machine learning approaches, the models are not terribly predictive or highly correlated. For these reasons, the study is very much hypothesis-generating and will not impact cure strategies or HIV reservoir measurement strategies in the short term.

    Strengths:

    The study cohort is large and diverse in terms of key input variables such as age, gender, and duration of ART. Selection of immune assays is appropriate. The authors used a wide array of bioinformatic approaches to examine correlations in the data. The paper was generally well-written and appropriately referenced.

    Weaknesses:

    (1) The major limitation of this work is that it is highly exploratory and not hypothesis-driven. While some interesting correlations are identified, these are clearly hypothesis-generating based on the observational study design.

    (2) The study's cross-sectional nature limits the ability to make mechanistic inferences about reservoir persistence. For instance, it would be very interesting to know whether the reservoir cluster is a feature of an individual throughout ART, or whether this outcome is dynamic over time.

    (3) A fundamental issue is that I am concerned that binarizing the 3 reservoir metrics in a 50/50 fashion is for statistical convenience. First, by converting a continuous outcome into a simple binary outcome, the authors lose significant amounts of quantitative information. Second, the low and high reservoir outcomes are not actually demonstrated to be clinically meaningful: I presume that both contain many (?all) data points above levels where rebound would be expected soon after interruption of ART. Reservoir levels would also have no apparent outcome on the selection of cure approaches. Overall, dividing at the median seems biologically arbitrary to me.

    (4) The two reservoir clusters are of potential interest as high total and intact with low % intact are discriminated somewhat by immune activation and exhaustion. This was the most interesting finding to me, but it is difficult to know whether this clustering is due to age, time on ART, other co-morbidity, ART adherence, or other possible unmeasured confounding variables.

    (5) At the individual level, there is substantial overlap between clusters according to total, intact, and % intact between the clusters. Therefore, the claim in the discussion that these 2 cluster phenotypes may require different therapeutic approaches seems rather speculative. That said, the discussion is very thoughtful about how these 2 clusters may develop with consideration of the initial insult of untreated infection and / or differences in immune recovery.

    (6) The authors state that the machine learning algorithms allow for reasonable prediction of reservoir volume. It is subjective, but to me, 70% accuracy is very low. This is not a disappointing finding per se. The authors did their best with the available data. It is informative that the machine learning algorithms cannot reliably discriminate reservoir volume despite substantial amounts of input data. This implies that either key explanatory variables were not included in the models (such as viral genotype, host immune phenotype, and comorbidities) or that the outcome for testing the models is not meaningful (which may be possible with an arbitrary 50/50 split in the data relative to median HIV DNA volumes: see above).

    (7) The decision tree is innovative and a useful addition, but does not provide enough discriminatory information to imply causality, mechanism, or directionality in terms of whether the immune phenotype is impacting the reservoir or vice versa or both. Tree accuracy of 80% is marginal for a decision tool.

    (8) Figure 2: this is not a weakness of the analysis but I have a question about interpretation. If total HIV DNA is more predictive of immune phenotype than intact HIV DNA, does this potentially implicate a prior high burden of viral replication (high viral load &/or more prolonged time off ART) rather than ongoing reservoir stimulation as a contributor to immune phenotype? A similar thought could be applied to the fact that clustering could only be detected when applied to total HIV DNA-associated features. Many investigators do not consider defective HIV DNA to be "part of the reservoir" so it is interesting to speculate why these defective viruses appear to have more correlation with immunophenotype than intact viruses.

    (9) Overall, the authors need to do an even more careful job of emphasizing that these are all just correlations. For instance, HIV DNA cannot be proven to have a causal effect on the immunophenotype of the host with this study design. Similarly, immunophenotype may be affecting HIV DNA or the correlations between the two variables could be entirely due to a separate confounding variable.

    (10) In general, in the intro, when the authors refer to the immune system, they do not consistently differentiate whether they are referring to the anti-HIV immune response, the reservoir itself, or both. More specifically, the sentence in the introduction listing various causes of immune activation should have citations. (To my knowledge, there is no study to date that definitively links proviral expression from reservoir cells in vivo to immune activation as it is next to impossible to remove the confounding possible imprint of previous HIV replication.) Similarly, it is worth mentioning that the depletion of intact proviruses is quite slow such that provial expression can only be stimulating the immune system at a low level. Similarly, the statement "Viral protein expression during therapy likely maintains antigen-specific cells of the adaptive immune system" seems hard to dissociate from the persistence of immune cells that were reactive to viremia.

    (11) Given the many limitations of the study design and the inability of the models to discriminate reservoir volume and phenotype, the limitations section of the discussion seems rather brief.