Contrasting responses to aridity by different-sized decomposers cause similar decomposition rates across a precipitation gradient

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This fundamental study substantially advances our understanding of the role of different-sized soil invertebrates in shaping the rates of leaf litter decomposition, using an experiment across seasons along an aridity gradient. The authors provide compelling evidence that the summed effects of all invertebrates (with large-sized invertebrates being more active in summer and small-sized invertebrates in winter) on decomposition rates result in similar levels of leaf litter decomposition across seasons. The work will be of broad interest to ecosystem ecologists interested in soil food webs, and researchers interested in modeling carbon cycles to understand global warming.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Litter decomposition is expected to be positively associated with precipitation despite evidence that decomposers of varying sizes have different moisture dependencies. We hypothesized that higher tolerance of macro-decomposers to aridity may counterbalance the effect of smaller decomposers, leading to similar decomposition rates across climatic gradients. We tested this hypothesis by placing plant litter baskets of different mesh sizes in seven sites along a sharp precipitation gradient, and by characterizing the macro-decomposer assemblages using pitfall trapping. We found that decomposers responded differently to precipitation levels based on their size, leading to similar overall decomposition rates across the gradient except in hyper-arid sites. Microbial decomposition was minimal during the dry summer, but in the wet winter was positively associated with precipitation, governing the whole-community decomposition. Meso-decomposition was moderate in both seasons and peaked in semi-arid sites. Macro-decomposition contributed minimally to whole-community decomposition during the winter, but during the summer dominated decomposition in the two arid sites. Macro-decomposer richness, abundance and biomass peaked in arid environments. Our findings highlight the importance of macro-decomposition in arid-lands, possibly resolving the dryland decomposition conundrum, and emphasizing the need to contemplate decomposer size when investigating zoogeochemical processes.

Article activity feed

  1. eLife assessment

    This fundamental study substantially advances our understanding of the role of different-sized soil invertebrates in shaping the rates of leaf litter decomposition, using an experiment across seasons along an aridity gradient. The authors provide compelling evidence that the summed effects of all invertebrates (with large-sized invertebrates being more active in summer and small-sized invertebrates in winter) on decomposition rates result in similar levels of leaf litter decomposition across seasons. The work will be of broad interest to ecosystem ecologists interested in soil food webs, and researchers interested in modeling carbon cycles to understand global warming.

  2. Reviewer #1 (Public Review):

    Summary:
    I really enjoyed this manuscript from Torsekar et al on "Contrasting responses to aridity by different-sized decomposers cause similar decomposition rates across a precipitation gradient". The authors aimed to examine how climate interacts with decomposers of different size categories to influence litter decomposition. They proposed a new hypothesis: "The opposing climatic dependencies of macrofauna and that of microorganisms and mesofauna should lead to similar overall decomposition rates across precipitation gradients".

    This study emphasizes the importance as well as the contribution of different groups of organisms (micro, meso, macro, and whole community) across different seasons (summer with the following characteristics: hot with no precipitation, and winter with the following characteristics: cooler and wetter winter) along a precipitation gradient. The authors made use of 1050 litter baskets with different mesh sizes to capture decomposers contribution. They proposed a new hypothesis that was aiming to understand the "dryland decomposition conundrum". They combined their decomposition experiment with the sampling of decomposers by using pittfall traps across both experiment seasons. This study was carried out in Israel and based on a single litter species that is native to all seven sites. The authors found that microorganism contribution dominated in winter while macrofauna decomposition dominated the overall decomposition in summer. These seasonality differences combined with the differences in different decomposers groups fluctuation along precipitation resulted in similar overall decomposition rates across sites.
    I believe this manuscript has a potential to advance our knowledge on litter decomposition.

    Strengths:
    Well design study with combination of different approaches (methods) and consideration of seasonality to generalize pattern.
    The study expands to current understanding of litter decomposition and interaction between factors affecting the process (here climate and decomposers).

    Weaknesses:
    The study was only based on a single litter species.

  3. Reviewer #2 (Public Review):

    Summary: Torsekar et al. use a leaf litter decomposition experiment across seasons, and in an aridity gradient, to provide a careful test of the role of different-sized soil invertebrates in shaping the rates of leaf litter decomposition. The authors found that large-sized invertebrates are more active in the summer and small-sized invertebrates in the winter. The summed effects of all invets then translated into similar levels of decomposition across seasons. The system breaks down in hyper-arid sites.

    Strengths: This is a well-written manuscript that provides a complete statistical analysis of a nice dataset. The authors provide a complete discussion of their results in the current literature.

    Weaknesses: I have only three minor comments. Please standardize the color across ALL figures (use the same color always for the same thing, and be friendly to color-blind people). Fig 1 may benefit from separating the orange line (micro and meso) into two lines that reflect your experimental setup and results. I would mention the dryland decomposition conundrum earlier in the Introduction. And the manuscript is full of minor grammatical errors. Some careful reading and fixing of all these minor mistakes here and there would be needed.