On the pH-dependence of α-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study presents important findings on the different polymorphs of alpha-synuclein filaments that form at various pH's during in vitro assembly reactions with purified recombinant protein. Of particular note is the discovery of two new polymorphs (1M and 5A) that form in PBS buffer at pH 7. The strength of the evidence presented is solid, but the addition of replicate experiments with re-purified proteins at pH 5.8 and pH 7 would further strengthen the conclusions. The work will be of interest to biochemists and biophysicists working on protein aggregation and amyloids.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical significance. However, it seems that there are about as many unique atomic-resolution structures of these aggregates as there are publications describing them. Obviously, this highly polymorphic nature of α-synuclein fibrils hampers efforts in disease-relevant in vitro studies on α-synuclein amyloid aggregation. In order to better understand the factors that affect polymorph selection we studied the structures of α-synuclein fibrils in vitro as a function of pH and buffer using cryo-EM helical reconstruction. We find that in the physiological range of pH 5.8-7.4 a pH-dependent selection between Types 1, 2 and 3 polymorphs occurs. Our results indicate that even in the presence of seeds, the polymorph selection during aggregation is highly dependent on the buffer conditions, attributed to the polymorph-unspecific nature of secondary nucleation. We also uncovered two new polymorphs that occur at pH 7.0 in phosphate-buffered saline. The first is a monofilament Type 1 fibril which highly resembles the structure of the juvenile-onset synucleinopathy polymorph found in patient-derived material. The second is a new Type 5 polymorph that resembles a polymorph that has been recently reported in a study that used diseased tissues to seed aggregation. Taken together, our results highlight the shallow amyloid energy hypersurface that can be altered by subtle changes in the environment, including the pH which is shown to play a major role in polymorph selection and in many cases appears to be the determining factor in seeded aggregation. The results also confirm the possibility of producing disease-relevant structure in vitro.

Article activity feed

  1. Author Response

    Reviewer #2 (Public Review):

    Weaknesses:

    The paper contains multiple instances of non-scientific language, as indicated below. It would also benefit from additional details on the cryo-EM structure determination in the Methods and inclusion of commonly accepted requirements for cryo-EM structures, like examples of 2D class averages, raw micrographs, and FSC curves (between half-maps as well as between rigid-body fitted (or refined) atomic models of the different polymorphs and their corresponding maps). In addition, cryo-EM maps for the control experiments F1 and F2 should be presented in Figure 9.

    We will include the suggested data on the Cryo-EM analyses in a revised version of the preprint. We did not collect data on the sample used for the seeds in the cross seeding experiments because we had already confirmed in multiple datasets that the conditions in F1 and F2 reproducibly produce fibrils of Type 1 and Type 3, respectively. In a revised version we will include the analyses of several more datasets at the F1 and F2 conditions to support this statement.

    Reviewer #3 (Public Review):

    Weaknesses:

    1. The authors reveal that both Type 1 monofilament fibril polymorph (reminiscent of JOS-like polymorph) and Type 5 polymorph (akin to tissue-amplified-like polymorph) can both form under the same condition. Additionally, this condition also fosters the formation of flat ribbon-like fibril across different batches. Notably, at pH 5.8, variations in experimental groups yield disparate abundance ratios between polymorph 3B and 3C, indicating a degree of instability in fibrillar formation. The variability would potentially pose challenges for replicability in subsequent research. In light of these situations, I propose the following recommendations:

    (1) An explicit elucidation of the factors contributing to these divergent outcomes under similar experimental conditions is warranted. This should include an exploration of whether variations in purified protein batches are contributing factors to the observed heterogeneity.

    We are in complete agreement that understanding the factors that lead to polymorph variability is of utmost importance (and was the impetus for the manuscript itself). However the number of variables to explore is overwhelming and we will continue to investigate this in our future research. Regarding the variability between batches of purified protein, we also think that this could be a factor in the polymorph variability observed for otherwise “identical” aggregation conditions, particularly at pH 7 where the largest variety of polymorphs have been observed. While our data still indicates that Type 1,2 and 3 polymorphs are strongly selected by pH, the selection between interface variants 3B vs. 3C and 2A vs. 2B might also be affected by protein purity. Our standard purification protocol produces a single band by coomassie-stained SDS-PAGE however minor truncations and other impurities below a few percent would go undetected and, given the proposed roles of the N and C-termini in secondary nucleation, could have a large effect on polymorph selection and seeding. In line with the reviewer’s comments we now include a batch number for each EM dataset. While no new conclusions can be drawn from the inclusion of this additional data, we feel that it is important to acknowledge the possible role of batch to batch variability.

    (2) To enhance the robustness of the conclusions, additional replicates of the experiments under the same condition should be conducted, ideally a minimum of three times.

    The pH 5.8 conditions that yield Type 3 fibrils has already been repeated several times in the original manuscript. The pH 7.4 conditions were only mentioned twice, once as an unseeded and once as a cross-seeded fibrilization. We solved a second Type 1 structure from a second dataset from the same protein batch fibrillized under similar conditions at pH 7.4 but with the addition of inositol trisphosphate in the hopes that we could replicate one of the in vivo polymorphs. However only the Type 1 polymorphs were observed and so we will add this data point to the revised manuscript. We are currently screening more fibrils produced at pH 7.0 and will include any replicates of Type 5 or the Type 1M polymorphs or of new structures that are obtained at these conditions… however, as noted in the original manuscript, reproducibility at this pH might be difficult because there appears to be a wider range of accessible polymorphs. As will be mentioned in the revised version, the Type 5 structure was solved from a manually picked set of fibers that represented 10-20% of the observed fibrils. The remaining fibers in the sample comprised polymorphs that could not be analyzed due to their inhomogeneity or lack of twist.

    (3) Further investigation into whether different polymorphs formed under the same buffer condition could lead to distinct toxicological and pathology effects would be a valuable addition to the study.

    The correlation of toxicity with structure would in principle be interesting. However the Type 1 and Type 3 polymorphs formed at pH 5.8 and 7.4 are not likely to be biologically relevant. The pH 7 polymorphs (Type 5 and 1M) would be more interesting because they form under the same conditions and might be related to some disease relevant structures. Still, it is rare that a single polymorph appears at 7.0 (the Type 5 represented only 10-20% of the fibrils in the sample and the Type 1M also had unidentified double-filament fibrils in the sample). We plan to pursue this line of research and hope to include it in a future publication.

    1. The cross-seeding study presented in the manuscript demonstrates the pivotal role of pH conditions in dictating conformation. However, an intriguing aspect that emerges is the potential role of seed concentration in determining the resultant product structure. This raises a critical question: at what specific seed concentration does the determining factor for polymorph selection shift from pH condition to seed concentration? A methodological robust approach to address this should be conducted through a series of experiments across a range of seed concentrations. Such an approach could delineate a clear boundary at which seed concentration begins to predominantly dictate the conformation, as opposed to pH conditions. Incorporating this aspect into the study would not only clarify the interplay between seed concentration and pH conditions, but also add a fascinating dimension to the understanding of polymorph selection mechanisms.

    A more complete analysis of the mechanisms of aggregation, including the effect of seed concentration and the resulting polymorph specificity of the process, are all very important for our understanding of the aggregation pathways of alpha-synuclein and are currently the topic of ongoing investigations in our lab.

    Furthermore, the study prompts additional queries regarding the behavior of cross-seeding production under the same pH conditions when employing seeds of distinct conformation. Evidence from various studies, such as those involving E46K and G51D cross-seeding, suggests that seed structure plays a crucial role in dictating polymorph selection. A key question is whether these products consistently mirror the structure of their respective seeds.

    We thank the reviewer for reminding us to include a reference to these studies as a clear example of polymorph selection by cross-seeding which we will do in the revised version. Unfortunately, it is not 100% clear from the G51D cross seeding manuscript (https://doi.org/10.1038/s41467-021-26433-2) what conditions were used in the cross-seeding since different conditions were used for the seedless wild-type and mutant aggregations… however it appears that the wild-type without seeds was Tris pH 7.5 (although at 37C the pH could have dropped to 7-ish) and the cross-seeded wild-type was in Phosphate buffer at pH 7.0. In the E46K cross-seeding manuscript, it appears that pH 7.5 Tris was used for all fibrilizations (https://doi.org/10.1073/pnas.2012435118). In any event, both results point to the fact that at pH 7.0-7.5 under low-seed conditions (0.5%) the Type 4 polymorph can propagate in a seed specific manner.

    1. In the Results section of "The buffer environment can dictate polymorph during seeded nucleation", the authors reference previous cell biological and biochemical assays to support the polymorph-specific seeding of MSA and PD patients under the same buffer conditions. This discussion is juxtaposed with recent research that compares the in vivo biological activities of hPFF, ampLB as well as LB, particularly in terms of seeding activity and pathology. Notably, this research suggests that ampLB, rather than hPFF, can accurately model the key aspects of Lewy Body Diseases (LBD) (refer to: https://doi.org/10.1038/s41467-023-42705-5). The critical issue here is the need to reconcile the phenomena observed in vitro with those in in-vivo or in-cell models. Given the low seed concentration reported in these studies, it is imperative for the authors to provide a more detailed explanation as to why the possible similar conformation could lead to divergent pathologies, including differences in cell-type preference and seeding capability.

    We thank the reviewer for bring this recent report to our attention. The findings that ampLB and hPFF have different PK digestion patterns and that only the former is able to model key aspects of Lewy Body disease are in support of the seed-specific nature of some types of alpha-synuclein aggregation. We will add more discussion regarding the significant role that seed type and seed conditions likely play in polymorph selection.

    1. In the Method section of "Image processing", the authors describe the helical reconstruction procedure, without mentioning much detail about the 3D reconstruction and refinement process. For the benefit of reproducibility and to facilitate a deeper understanding among readers, the authors should enrich this part to include more comprehensive information, akin to the level of detail found in similar studies (refer to: https://doi.org/10.1038/nature23002).

    As suggested by reviewer #2, we will add more comprehensive information on the 3D reconstruction and refinement process to a revised version.

    1. The abbreviation of amino acids should be unified. In the Results section "On the structural heterogeneity of Type 1 polymorphs", the amino acids are denoted using three-letter abbreviation. Conversely, in the same section under "On the structural heterogeneity of Type 2 and 3 structures", amino acids are abbreviated using the one-letter format. For clarity and consistency, it is essential that a standardized format for amino acid abbreviations be adopted throughout the manuscript.

    That makes perfect sense and will be corrected in a revised version.

    Reviewing Editor:

    After discussion among the reviewers, it was decided that point 2 in Reviewer #3's Public Review (about the experiments with different concentrations of seeds) would probably lie outside the scope of a reasonable revision for this work.

    We agree as stated above and will continue to work on this important point.

  2. eLife assessment

    This study presents important findings on the different polymorphs of alpha-synuclein filaments that form at various pH's during in vitro assembly reactions with purified recombinant protein. Of particular note is the discovery of two new polymorphs (1M and 5A) that form in PBS buffer at pH 7. The strength of the evidence presented is solid, but the addition of replicate experiments with re-purified proteins at pH 5.8 and pH 7 would further strengthen the conclusions. The work will be of interest to biochemists and biophysicists working on protein aggregation and amyloids.

  3. Reviewer #1 (Public Review):

    Summary:
    Frey et al. report the structures of aSyn fibrils that were obtained under a variety of conditions. These include the generation of aSyn fibrils without seeds, but in different buffers and at different pH values. These also include the generation of aSyn fibrils in the presence of seeding fibrils, again performed in different buffers and at different pH values, while the seeds were generated at different conditions. The authors find that fibril polymorphs primarily correlate with fibril growth buffer conditions, and not such much with the type of seed. However, the presence of a seed is still required, likely because fibrils can also seed along their lateral surfaces, not only at the blunt ends.

    Strengths:
    The manuscript includes an excellent review of the numerous available structures of aSyn. As the authors state, "it seems that there are about as many unique atomic-resolution structures of these aggregates as there are publications describing them."

    The text is interesting to read, figures are clear and not redundant.

    Weaknesses:
    The manuscript is excellently written, but sometimes a few commas are lacking.

  4. Reviewer #2 (Public Review):

    Summary:
    This is an exciting paper that explores the in vitro assembly of recombinant alpha-synuclein into amyloid filaments. The authors changed the pH and the composition of the assembly buffers, as well as the presence of different types of seeds, and analysed the resulting structures by cryo-EM.

    Strengths:
    By doing experiments at different pHs, the authors found that so-called type-2 and type-3 polymorphs form in a pH-dependent manner. In addition, they find that type-1 filaments form in the presence of phosphate ions. One of their in vitro assembled type-1 polymorphs is similar to the alpha-synuclein filaments that were extracted from the brain of an individual with juvenile-onset synucleinopathy (JOS). They hypothesize that additional densities in a similar place as additional densities in the JOS fold correspond to phosphate ions.

    Weaknesses:
    The paper contains multiple instances of non-scientific language, as indicated below. It would also benefit from additional details on the cryo-EM structure determination in the Methods and inclusion of commonly accepted requirements for cryo-EM structures, like examples of 2D class averages, raw micrographs, and FSC curves (between half-maps as well as between rigid-body fitted (or refined) atomic models of the different polymorphs and their corresponding maps). In addition, cryo-EM maps for the control experiments F1 and F2 should be presented in Figure 9.

  5. Reviewer #3 (Public Review):

    Summary:
    The high heterogeneity nature of α-synuclein (α-syn) fibrils posed significant challenges in structural reconstruction of the ex vivo conformation. A deeper understanding of the factors influencing the formation of various α-syn polymorphs remains elusive. The manuscript by Frey et al. provides a comprehensive exploration of how pH variations (ranging from 5.8 to 7.4) affect the selection of α-syn polymorphs (specifically, Type1, 2, and 3) in vitro by using cryo-electron microscopy (cryo-EM) and helical reconstruction techniques. Crucially, the authors identify two novel polymorphs at pH 7.0 in PBS. These polymorphs bear resemblance to the structure of patient-derived juvenile-onset synucleinopathy (JOS) polymorph and diseased tissue amplified α-syn fibrils. The manuscript supports the notion that seeding is non-polymorph-specific in the context of secondary nucleation-dominated aggregation, underscoring the irreplaceable role of pH in polymorph formation. Nevertheless, certain areas within the manuscript would benefit from further refinement and elaboration to more robustly substantiate this hypothesis.

    Strengths:
    This study systematically investigates the effects of environmental conditions and seeding on the structure of α-syn fibrils. It emphasizes the significant influence of environmental factors, especially pH, in determining the selection of α-syn polymorphs. The high-resolution structures obtained through cryo-EM enable a clear characterization of the composition and proportion of each polymorph in the sample. Collectively, this work provides strong support for the pronounced sensitivity of α-syn fibril structures to environmental conditions and systematically categorizes previously reported α-syn fibril structures. Furthermore, the identification of JOS-like polymorph also demonstrates the possibility of in vitro reconstruction of brain-derived α-syn fibril structures.

    Weaknesses:
    1. The authors reveal that both Type 1 monofilament fibril polymorph (reminiscent of JOS-like polymorph) and Type 5 polymorph (akin to tissue-amplified-like polymorph) can both form under the same condition. Additionally, this condition also fosters the formation of flat ribbon-like fibril across different batches. Notably, at pH 5.8, variations in experimental groups yield disparate abundance ratios between polymorph 3B and 3C, indicating a degree of instability in fibrillar formation. The variability would potentially pose challenges for replicability in subsequent research. In light of these situations, I propose the following recommendations:

    (1) An explicit elucidation of the factors contributing to these divergent outcomes under similar experimental conditions is warranted. This should include an exploration of whether variations in purified protein batches are contributing factors to the observed heterogeneity.

    (2) To enhance the robustness of the conclusions, additional replicates of the experiments under the same condition should be conducted, ideally a minimum of three times.

    (3) Further investigation into whether different polymorphs formed under the same buffer condition could lead to distinct toxicological and pathology effects would be a valuable addition to the study.

    2. The cross-seeding study presented in the manuscript demonstrates the pivotal role of pH conditions in dictating conformation. However, an intriguing aspect that emerges is the potential role of seed concentration in determining the resultant product structure. This raises a critical question: at what specific seed concentration does the determining factor for polymorph selection shift from pH condition to seed concentration? A methodological robust approach to address this should be conducted through a series of experiments across a range of seed concentrations. Such an approach could delineate a clear boundary at which seed concentration begins to predominantly dictate the conformation, as opposed to pH conditions. Incorporating this aspect into the study would not only clarify the interplay between seed concentration and pH conditions, but also add a fascinating dimension to the understanding of polymorph selection mechanisms.

    Furthermore, the study prompts additional queries regarding the behavior of cross-seeding production under the same pH conditions when employing seeds of distinct conformation. Evidence from various studies, such as those involving E46K and G51D cross-seeding, suggests that seed structure plays a crucial role in dictating polymorph selection. A key question is whether these products consistently mirror the structure of their respective seeds.

    3. In the Results section of "The buffer environment can dictate polymorph during seeded nucleation", the authors reference previous cell biological and biochemical assays to support the polymorph-specific seeding of MSA and PD patients under the same buffer conditions. This discussion is juxtaposed with recent research that compares the in vivo biological activities of hPFF, ampLB as well as LB, particularly in terms of seeding activity and pathology. Notably, this research suggests that ampLB, rather than hPFF, can accurately model the key aspects of Lewy Body Diseases (LBD) (refer to: https://doi.org/10.1038/s41467-023-42705-5). The critical issue here is the need to reconcile the phenomena observed in vitro with those in in-vivo or in-cell models. Given the low seed concentration reported in these studies, it is imperative for the authors to provide a more detailed explanation as to why the possible similar conformation could lead to divergent pathologies, including differences in cell-type preference and seeding capability.

    4. In the Method section of "Image processing", the authors describe the helical reconstruction procedure, without mentioning much detail about the 3D reconstruction and refinement process. For the benefit of reproducibility and to facilitate a deeper understanding among readers, the authors should enrich this part to include more comprehensive information, akin to the level of detail found in similar studies (refer to: https://doi.org/10.1038/nature23002).

    5. The abbreviation of amino acids should be unified. In the Results section "On the structural heterogeneity of Type 1 polymorphs", the amino acids are denoted using three-letter abbreviation. Conversely, in the same section under "On the structural heterogeneity of Type 2 and 3 structures", amino acids are abbreviated using the one-letter format. For clarity and consistency, it is essential that a standardized format for amino acid abbreviations be adopted throughout the manuscript.