A conserved cell-pole determinant organizes proper polar flagellum formation

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This important research uses an elegant combination of protein-protein biochemistry, genetics, and microscopy to demonstrate that the novel bacterial protein FipA is required for polar flagella synthesis and binds to FlhF in multiple bacterial species. This manuscript is convincing, providing evidence for the early stages of flagellar synthesis at a cell pole; however, the protein biochemistry is incomplete and would benefit from additional rigorous experiments. This paper could be of significant interest to microbiologists studying bacterial motility, appendages, and cellular biology.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.

Article activity feed

  1. eLife assessment

    This important research uses an elegant combination of protein-protein biochemistry, genetics, and microscopy to demonstrate that the novel bacterial protein FipA is required for polar flagella synthesis and binds to FlhF in multiple bacterial species. This manuscript is convincing, providing evidence for the early stages of flagellar synthesis at a cell pole; however, the protein biochemistry is incomplete and would benefit from additional rigorous experiments. This paper could be of significant interest to microbiologists studying bacterial motility, appendages, and cellular biology.

  2. Joint Public Review:

    Bacteria exhibit species-specific numbers and localization patterns of flagella. How specificity in number and pattern is achieved in Gamma-proteobacteria needs to be better understood but often depends on a soluble GTPase called FlhF. Here, the authors take an unbiased protein-pulldown approach with FlhF, resulting in identifying the protein FipA in V. parahaemolyticus. They convincingly demonstrate that FipA interacts genetically and biochemically with previously known spatial regulators HubP and FlhF. FipA is a membrane protein with a cytoplasmic DUF2802; it co-localizes to the flagellated pole with HubP and FlhF. The DUF2802 mediates the interaction between FipA and FlhF, and this interaction is required for FipA function. Altogether, the authors show that FipA likely facilitates the recruitment of FlhF to the membrane at the cell pole together with the known recruitment factor HupB. This finding is crucial in understanding the mechanism of polar localization. The authors show that FipA co-occurs with FlhF in the genomes of bacteria with polarly-localized flagella and study the role of FipA in three of these organisms: V. parahaemolyticus, S. purtefaciens, and P. putida. In each case, they show that FipA contributes to FlhF polar localization, flagellar assembly, flagellar patterning, and motility, though the details differ among the species. By comparing the role of FipA in polar flagellum assembly in three different species, they discover that, while FipA is required in all three systems, evolution has brought different nuances that open avenues for further discoveries.

    Strengths:

    The discovery of a novel factor for polar flagellum development. The solid nature and flow of the experimental work.

    The authors perform a comprehensive analysis of FipA, including phenotyping of mutants, protein localization, localization dependence, and domains of FipA necessary for each. Moreover, they perform a time-series analysis indicating that FipA localizes to the cell pole likely before, or at least coincident with, flagellar assembly. They also show that the role of FipA appears to differ between organisms in detail, but the overarching idea that it is a flagellar assembly/localization factor remains convincing.

    The work is well-executed, relying on bacterial genetics, cell biology, and protein interaction studies. The analysis is deep, beginning with discovering a new and conserved factor, then the molecular dissection of the protein, and finally, probing localization and interaction determinants. Finally, the authors show that these determinants are important for function; they perform these studies in parallel in three model systems.

    Weaknesses:

    The comparative analysis in the different organisms was on balance, a weakness. Mixing the data for the organisms together made the text difficult to read and took away key points from the results. The individual details crowded out the model in its current form. Indeed, because some of the phenotypes and localization dependencies differ between model systems, the comparison is challenging to the reader. The authors could more clearly state what these differences mean, why they arise, and (in the discussion) how they might relate to the organism's lifestyle.

    More experiments would be needed to fully analyze the effects of interacting proteins on individual protein stability; this absence slightly detracted from the conclusions.