FBXO24 deletion causes abnormal accumulation of membraneless electron-dense granules in sperm flagella and male infertility

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study presents a valuable finding that a testis-enriched gene is essential for normal formation and function of the sperm flagellum, motility, and male fertility in mice. The data on phenotypic characterization are solid, but the evidence supporting the direct role of this protein in preventing RNP granule formation in the sperm flagellum appears insufficient. This work will be of interest to biomedical researchers who work on testicular biology and male fertility.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.

Article activity feed

  1. eLife assessment

    This study presents a valuable finding that a testis-enriched gene is essential for normal formation and function of the sperm flagellum, motility, and male fertility in mice. The data on phenotypic characterization are solid, but the evidence supporting the direct role of this protein in preventing RNP granule formation in the sperm flagellum appears insufficient. This work will be of interest to biomedical researchers who work on testicular biology and male fertility.

  2. Reviewer #1 (Public Review):

    Summary:

    The main goal of the authors was to study the testis-specific role of the protein FBXO24 in the formation and function of the ribonucleoprotein granules (membraneless electron-dense structures rich in RNAs and proteins).

    Strengths:

    The wide variety of methods used to support their conclusions (including transgenic models)

    Weaknesses:

    The lack of specific antibodies against FBXO24. Some of the experiments showing a specific phenotype are descriptive and lack of logical explanation about the possible mechanism (i.e. AR or the tail structure).

    Questions:

    The paper is excellent and employs a wide variety of methods to substantiate the conclusions. I have very few questions to ask:

    1. KO mice cannot undergo acrosome reaction (AR) even spontaneously. How do you account for this, given that no visible defects were observed in the acrosome?

    2. KO sperm are unable to migrate in the female tract, and, more intriguingly, they do not pass through the utero-tubal junction (UTJ). The levels of ADAM3 are normal, suggesting that the phenotype is influenced by other factors. The authors should investigate the levels of Ly6K since mice also exhibit the same phenotype but with normal levels of ADAM3.

    3. In Figure 4A, the authors assert that "RBGS Tg mice revealed that mitochondria were abnormally segmented in Fbxo24 KO spermatozoa." I am unable to discern this from the picture shown in that panel. Could you please provide a more detailed explanation or display the information more explicitly?

  3. Reviewer #2 (Public Review):

    Summary:

    The manuscript by Kaneda et al "FBXO24 ensures male fertility by preventing abnormal accumulation 2 of membraneless granules in sperm flagella" is a significant paper on the role of FBXO24 in murine male germ cell development and sperm ultrastructure and function. The body of experimental evidence that the authors present is extraordinarily strong in both breadth and depth. The authors investigate the protein's functions in male germ cells and sperm using a wide variety of approaches but focusing predominantly on their novel mouse model featuring deletion of the Fbxo24 gene and its product. Using this mouse, and a cross of it with another model that expresses reporters in the head and midpiece, they logically build from one experiment to the next. Together, their data show that this protein is involved in the regulation of membraneless electron-dense structures; loss of FBXO24 led to an accumulation of these materials and defects in the sperm flagellum and fertilizing ability. Interestingly, the authors found that several of the best-known components of electron-dense ribonucleoprotein granules that are found in the intermitochondrial cement and chromatoid body were not disrupted in the Fbxo24 knockout, suggesting that the electron-dense material and these structures are not all the same, and the biology is more complicated than some might have thought. They found evidence for the most changes in IPO5 and KPNB1, and biochemical evidence that FBXO24 and IPO5 could interact.

    Strengths:

    The authors are to be commended for the thoroughness of their experimental approaches and the extent to which they investigated impacts on sperm function and potential biochemical mechanisms. Very briefly, they start by showing that the Fbxo24 message is present in spermatids and that the protein can interact with SKP1, in a way that is dependent on its F-box domain. This points toward a potential function in protein degradation. To test this, they next made the knockout mouse, validated it, and found the males to be sterile, although capable of plugging a female. Looking at the sperm, they identified a number of ultrastructural and morphological abnormalities, which they looked at in high resolution using TEM. They also cross their model with RBGS mice so that they have reporters in both the acrosome and mitochondria. The authors test a variety of sperm functions, including motility parameters, ability to fertilize by IVF, cumulus-free IVF, zona-free-IVF, and ICSI. They found that ICSI could rescue the knockout but not other assisted reproductive technologies. Defects in male fertility likely resulted from motility disruption and failure to get through the utero-tubal junction but defects in acrosome exocytosis also were noted. The authors performed thorough investigations including both targeted and unbiased approaches such as mass spectrometry. These enabled them to show that although the loss of the FBXO24 protein led to more RNA and elevated levels of some proteins, it did not change others that were previously identified in the electron-dense RNP material.

    The manuscript will be highly significant in the field because the exact functions of the electron-dense RNP materials have remained somewhat elusive for decades. Much progress has been made in the past 15 years but this work shows that the situation is more complex than previously recognized. The results show critical impacts of protein degradation in the differentiation process that enables sperm to change from non-descript round cells into highly polarized and compartmentalized mature sperm, with an equally highly compartmentalized flagellum. This manuscript also sets a high bar for the field in terms of how thorough it is, which reveals wide-ranging impacts on processes such as mitochondrial compaction and arrangement in the midpiece, the correct building of the major cytoskeletal elements in the flagellum, etc.

    Weaknesses:

    There are no real weaknesses in the manuscript that result from anything in the control of the authors. They attempted to rescue the knockout by expressing a FLAG-tagged Fbxo24 transgene, but that did not rescue the phenotype, either because of inappropriate levels/timing/location of expression, or because of interference by the tag. They also could not make anti-FBXO24 that worked for co-immunoprecipitation experiments, so relied on the FLAG epitope, an approach that successfully showed co-IP with IPO5 and SKP1.

  4. Reviewer #3 (Public Review):

    Summary:

    In this manuscript, the authors found that FBXO24, a testis-enriched F-box protein, is indispensable for male fertility. Fbxo24 KO mice exhibited malformed sperm flagellar and compromised sperm motility.

    Strengths:

    The phenotype of Fbxo24 KO spermatozoa was well analyzed.

    Weaknesses:

    The authors observed numerous membraneless electron-dense granules in the Fbxo24 KO spermatozoa. They also showed abnormal accumulation of two importins, IPO5 and KPNB1, in the Fbxo24 KO spermatozoa. However, the data presented in the manuscript do not support the conclusion that FBXO24 ensures male fertility by preventing the abnormal accumulation of membraneless granules in sperm flagella, as indicated in the manuscript title.