Mutant mice lacking alternatively spliced p53 isoforms unveil Ackr4 as a male-specific prognostic factor in Myc-driven B-cell lymphomas

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This important study using engineered mouse models provides a first compelling demonstration of a pathogenic phenotype associated with lack of expression of p53AS, an isoform of the p53 protein with a different C-terminus as canonical p53. The work also offers correlative evidence that Ackr4, differentially expressed in this mouse model, may be a male-specific prognostic factor in a specific type of B-cell lymphomas. Direct functional evidence testing the links proposed would better support the major findings of the study.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The gene encoding p53, a major tumor suppressor protein, encodes several alternative isoforms of elusive biological significance. Here we show that mice lacking the Trp53 Alternatively Spliced (AS) exon, thereby expressing the canonical p53 protein but not isoforms with the AS C-terminus, have unexpectedly lost a male-specific protection against Myc-induced B-cell lymphomas. Lymphomagenesis was delayed in p53 +/+ Eμ-Myc males compared to p53 ΔAS/ΔAS Eμ-Myc males, but also compared to p53 +/+ Eμ-Myc and p53 ΔAS/ΔAS Eμ-Myc females. Pre-tumoral splenocytes from p53 +/+ Eμ-Myc males exhibited a higher expression of Ackr4, encoding an atypical chemokine receptor with tumor suppressive effects. We show that Ackr4 is a p53 target gene, but that its p53-mediated transactivation is inhibited by estrogens. We identify Ackr4 as a male-specific factor of good prognosis, relevant for murine Eμ-Myc-induced and human Burkitt lymphomas. These data demonstrate the functional relevance of alternatively spliced p53 isoforms and reveal sex disparities in Myc-driven B-cell lymphomagenesis.

Article activity feed

  1. eLife assessment

    This important study using engineered mouse models provides a first compelling demonstration of a pathogenic phenotype associated with lack of expression of p53AS, an isoform of the p53 protein with a different C-terminus as canonical p53. The work also offers correlative evidence that Ackr4, differentially expressed in this mouse model, may be a male-specific prognostic factor in a specific type of B-cell lymphomas. Direct functional evidence testing the links proposed would better support the major findings of the study.

  2. Reviewer #1 (Public Review):

    Summary:
    The authors originally investigated the function of p53 isoforms with an alternative C-terminus encoded by the Alternatively Spliced (AS) exon in place of exon 11 encoding the canonical "α" C-terminal domain. For this purpose, the authors create a mouse model with a specific deletion of the AS exon.

    Strengths:
    Interestingly, wt or p53ΔAS/ΔAS mouse embryonic fibroblasts did not differ in cell cycle control, expression of well-known p53 target genes, proliferation under hyperoxic conditions, or the growth of tumor xenografts. However, p53-AS isoforms were shown to confer male-specific protection against lymphomagenesis in Eμ-Myc transgenic mice, prone to highly penetrant B-cell lymphomas. In fact, p53ΔAS/ΔAS Eμ-Myc mice were less protected from developing B-cell lymphomas compared to WT counterparts. The important difference that the authors find between WT and p53ΔAS/ΔAS Eμ-Myc males is a higher number of immature B cells in p53ΔAS/ΔAS vs WT mice. Higher expression of Ackr4 and lower expression of Mt2 was found in p53+/+ Eμ-Myc males compared to p53ΔAS/ΔAS counterparts, suggesting that these two transcripts are in part regulators of B-cell lymphomagenesis and enrichment for immature B cells.

    Weaknesses:
    The manuscript is interesting but the data are not so striking and are very correlative. The authors should add functional experiments to reinforce their hypotheses and to provide, beyond potential prognostic factors, any potential mechanism at the basis of the different rates of B-cell lymphomagenesis in males vs females individuals and in WT vs p53ΔAS/ΔAS Eμ-Myc males.

  3. Reviewer #2 (Public Review):

    Summary:
    This manuscript provides a detailed analysis of B-cell lymphomagenesis in mice lacking an alternative exon in the region encoding the C-terminal (regulatory) domain of the p53 protein and thus enable to assemble the so-called p53AS isoform. This isoform differs from canonical p53 by the replacement of roughly 30 c-terminal residues by about 10 residues encoded by the alternative exon. There is biochemical and biological evidence that p53AS retains strong transcriptional and somewhat enhanced suppressive activities, with mouse models expressing protein constructs similar to p53AS showing signs of increased p53 activity leading to rapid and lethal anemia. However, the precise role of the alternative p53AS variant has not been addressed so far in a mouse model aimed at demonstrating whether the lack of this particular p53 isoform (trp53ΔAS/ΔAS mice) may cause a specific pathological phenotype.

    Results show that lack of AS expression does not noticeably affect p53 transcriptional activity but reveals a subtle pathogenic phenotype, with trp53ΔAS/ΔAS males, but not females, tending to develop more frequently and earlier B-cell lymphoma than WT. Next, the authors then introduced ΔAS in transgenic Eμ-Myc mice that show accelerated lymphomagenesis. They show that lack of AS caused increased lethality and larger tumor lymph nodes in p53ΔAS Eμ-Myc males compared to their p53WT Eμ-Myc male counterparts, but not in females. Comparative transcriptomics identified a small set of candidate, differentially expressed genes, including Ackr4 (atypical chemokine receptor 4), which was significantly less expressed in the spleens of ΔAS compared to WT controls. Ackr4 encodes a dummy receptor acting as an interceptor for multiple chemokines and thus may negatively regulate a chemokine/cytokine signalling axis involved in lymphomagenesis, which is down-regulated by estrogen signalling. Using in vitro cell models, the authors provide evidence that Ackr4 is a transcriptional target for p53 and that its p53-dependent activation is repressed by 17b-oestradiol. Finally, seeking evidence for a relevance for this gene in human lymphomagenesis, the authors analyse Burkitt lymphoma transcriptomic datasets and show that high ACKR4 expression correlated with better survival in males, but not in females

    Strengths:
    A convincing demonstration of a subtle, gender-specific pathogenic phenotype associated with the lack of p53AS. The characterization of trp53ΔAS/ΔAS is well described and the data presented are convincing. This represents a significant achievement since, as mentioned, in vivo data establishing the relevance of p53AS isoform remains scarce. Based on this initial observation, the authors provide strong correlative evidence that this particular phenotype is associated by differential expression of Ackr4.

    Weaknesses:
    The study does not demonstrate how p53AS may specifically and differentially contribute to the regulation of Ackr4, nor whether restoring Ackr4 expression may nullify the observed phenotype.