Human DDX6 regulates translation and decay of inefficiently translated mRNAs

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This valuable study demonstrates the requirement of a DEAD-box helicase DDX6 for the cotranslational mRNA decay pathway in human cells. The authors performed a set of solid experiments, combining DDX6 KO cells with reporter assay and global analysis of mRNA stability/translation efficiency. Although some conclusions drawn by the authors need a more careful examination of alternative possibilities, this study will be of broad interest to RNA biologists working on translational control and mRNA stability.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrate that the human ortholog of Dhh1p, DDX6, triggers deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation-and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

Article activity feed

  1. eLife assessment

    This valuable study demonstrates the requirement of a DEAD-box helicase DDX6 for the cotranslational mRNA decay pathway in human cells. The authors performed a set of solid experiments, combining DDX6 KO cells with reporter assay and global analysis of mRNA stability/translation efficiency. Although some conclusions drawn by the authors need a more careful examination of alternative possibilities, this study will be of broad interest to RNA biologists working on translational control and mRNA stability.

  2. Reviewer #1 (Public Review):

    Weber et al. investigated the role of human DDX6 in messenger RNA decay using CRISPR/Cas9 mediated knockout (KO) HEK293T cells. The authors showed that stretches of rare codons or codons known to cause ribosome stalling in reporter mRNAs leads to a DDX6 specific loss of mRNA decay. The authors moved on to show that there is a physical interaction between DDX6 and the ribosome. Using co-immunoprecipitation (co-IP) experiments, the authors determined that the FDF-binding surface of DDX6 is necessary for binding to the ribosome, the same domain which is necessary for binding several decapping factors such as EDC3, LSM14A, and PatL. However, they determine the interaction between DDX6, and the ribosome is independent of the DDX6 interaction with the NOT1 subunit of the CCR4-NOT complex. Interestingly, the authors were able to determine that all known functional domains, including the ATPase activity of DDX6, are required for its effect on mRNA decay. Using ribosome profiling and RNA-sequencing, the authors were able to identify a group of 260 mRNAs that exhibit increased translational efficiency (TE) in DDX6 Knockout cells, suggesting that DDX6 translationally represses certain mRNAs. The authors determined this group of mRNAs has decreased GC content, which has been previously noted to coincide with low codon optimality, the authors thus conclude DDX6 may translationally repress transcripts of low codon optimality. Furthermore, the authors identify 35 transcripts that are both upregulated in DDX6 KO cells and exhibit locally increased ribosome footprints (RBFs), suggestive of a ribosome stalling sequence. Lastly, the authors showed that both endogenous and tethering of DDX6 to reporter mRNAs with and without these translational stalling sequences leads to a relative increase in ribosome association to a transcript. Overall, this work confirms that the role of DDX6 in mRNA decay shares several conserved features with the yeast homolog Dhh1. Dhh1 is known to bind slow-moving ribosomes and lead to the differential decay of non-optimal mRNA transcripts (Radhakrishnan et al. 2016). The novelty of this work lies primarily in the identification of the physical interaction between DDX6 and the ribosome and the breakdown of which domains of DDX6 are necessary for this interaction. This work provides major insight into the role of the human DDX6 in the process of mRNA decay and emphasizes the evolutionary conservation of this process across Eukaryotes.
    Strengths: Weber et al. take our knowledge of dhh1, the yeast homolog of the human DDX6, and determine several features that are conserved across eukaryotes. The authors take our understanding of DDX6 a step further by identifying the specific domains involved in the interaction between DDX6 and the ribosome. As well as, differentiating those interactions from other factors known to interact with DDX6, such as NOT1. All of this is necessary and important to understand how mRNA decay plays a role in post-transcriptional gene regulation in humans.
    Weaknesses: The authors fail to truly define codon optimality, rare codons, and stalling sequences in their work, all of which are distinct terminologies. They use reporters with rare codon usage but do not mention what metrics they use to determine this, such as cAI, codon usage bias, or tAI. The distinction between the type of codon sequences that DDX6 affects is very important to differentiate and should be done here as certain stretches of codons are known to lead to different quality control RNA decay pathways that are not reliant on canonical mRNA decay factors. Likewise, the authors sort their Ribo-seq data to determine genes that might exhibit a DDX6 specific mRNA decay effect but fail to go into great depth about common features shared among these genes other than GO term analysis, GC content, and coding sequence (CDS) length. The authors then sort out 35 genes that are both upregulated at the mRNA level and have increased local ribosome footprint along the ORF. They are then able to show that 6 out of 9 of those genes had a DDX6-dependent mRNA decay effect. There was no comment or effort as to why 2 out of those 6 genes tested did not show as strong of a DDX6-dependent decay effect relative to the other targets tested. Thus, the efforts to identify mRNA features at a global level that exhibited DDX6-dependent mRNA decay effects are lacking in this analysis.
    Overall, the work done by Weber et al. is sound, with the proper controls. The authors expand significantly on the knowledge of what we know about DDX6 in the process of mRNA decay in humans, confirming the evolutionary conservation of the role of this factor across eukaryotes. The analysis of the RNA-seq and Ribo-seq data could be more in-depth, however, the authors were able to show with certainty that some transcripts containing known repetitive sequences or polybasic sequences exhibited a DDX6-mRNA decay effect.

  3. Reviewer #2 (Public Review):

    In the manuscript by Weber and colleagues, the authors investigated the role of a DEAD-box helicase DDX6 in regulating mRNA stability upon ribosome slowdown in human cells. The authors knocked out DDX6 KO in HEK293T cells and showed that the half-life of a reporter containing a rare codon repeat is elongated in the absence of DDX6. By analogy to the proposed function of fission yeast Dhh1p (DDX6 homolog) as a sensor for slow ribosomes, the authors demonstrated that recombinant DDX6 interacted with human ribosomes. The interaction with the ribosome was mediated by the FDF motif of DDX6 located in its RecA2 domain, and rescue experiments showed that DDX6 requires the FDF motif as well as its interaction with the CCR4-NOT deadenylase complex and ATPase activity for degrading a reporter mRNA with rare codons. To identify endogenous mRNAs regulated by DDX6, they performed RNA-Seq and ribosome footprint profiling. The authors focused on mRNAs whose stability is increased in DDX6 KO cells with high local ribosome density and validated that such mRNA sequences induced mRNA degradation in a DDX6-dependent manner.

    The experiments were well-performed, and the results clearly demonstrated the requirement of DDX6 in mRNA degradation induced by slowed ribosomes. However, in some cases, the authors interpreted their data in a biased way, possibly influenced by the yeast study, and drew too strong conclusions. In addition, the authors should have cited important studies about codon optimality in mammalian cells. This lack of information hinders placing their important discoveries in a correct context.

    1. Although the authors concluded that DDX6 acts as a sensor of the slowed ribosome, it is not clear if DDX6 indeed senses the ribosome speed. What the authors showed is a requirement of DDX6 for mRNA decay induced by rare codons, and DDX6 binds to the ribosome to exert this role. For example, DDX6 may bridge the sensor and decay machinery on the ribosome. Without structural or biochemical data on the recognition of the slowed ribosome by DDX6, the role of DDX6 as a sensor remains one of the possible models. It should be described in the discussion section.

    2. It is not clear if DDX6 directly binds the ribosome. The authors used ribosomes purified by sucrose cushion, but ribosome-associating and FDF motif-interacting factors might remain on ribosomes, even after RNaseI treatment. Without structural or biochemical data of the direct interaction between the ribosome and DDX6, the authors should avoid description as if DDX6 directly binds to the ribosome.

    3. Although the authors performed rigorous reporter assays recapitulating the effect of ribosome-retardation sequences on mRNA stability, this is not the first report showing that codon optimality determines mRNA stability in human cells. The authors did not cite important previous studies, such as Wu et al., 2019 (PMID: 31012849), Hia et al., 2019 (PMID: 31482640), Narula et al., 2019 (PMID: 31527111), and Forrest et al., 2020 (PMID: 32053646). These milestone papers should be cited in the Introduction, Results, and Discussion.

    4. While both DDX6 and deadenylation by the CCR4-NOT were required for mRNA decay by the slowed ribosome, whether DDX6 is required for deadenylation was not investigated. Given that the CCR4-NOT deadenylate complex directly interacts with the empty ribosome E-site in yeast and humans (Buschauer et al., 2020 PMID: 32299921 and Absmeier et al., 2023 PMID: 37653243), whether the loss of DDX6 also affected the action of the CCR4-NOT complex is an important point to investigate, or at least should be discussed in this paper.