Four Individually Identified Paired Dopamine Neurons Signal Taste Punishment in Larval Drosophila

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This comprehensive study presents important findings that delineate how specific dopaminergic neurons (DANs) instruct aversive learning in Drosophila larvae exposed to high salt through an integration of behavioral experiments, imaging, and connectomic analysis. The work reveals how a numerically minimal circuit achieves remarkable functional complexity, with redundancies and synergies within the DL1 cluster that challenge our understanding of how few neurons generate learning behaviors. By establishing a framework for sensory-driven learning pathways, the study makes a compelling and substantial contribution to understanding associative conditioning while demonstrating conservation of learning mechanisms across Drosophila developmental stages.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Dopaminergic neurons (DANs) carry out multiple tasks in the brain, including the transmission of information related to rewards and punishments across various animal species. They are responsible for evaluating sensory input, storing resulting associations as memory, and continuously updating them based on their relevance and reliability. Accurate comprehension of the dopaminergic system’s operation necessitates an understanding of the specific functions mediated by individual DANs. To this end, our research employs Drosophila larvae, which possess approximately 12,000 neurons in their brains, of which only around 1% (approximately 120) are DANs.

The presynaptic projections to the mushroom body (MB) - a brain region pivotal for associative olfactory learning in insects - are limited to only eight larval dopaminergic neurons. These DANs are further subdivided into two clusters: the primary protocerebral anterior medial cluster (pPAM) comprises four cells, and the dorsolateral 1 cluster (DL1) comprises the remaining four cells. Our findings confirm previous research that demonstrates that the pPAM DANs innervating the MB’s medial lobe encode for a gustatory sugar reward signal. Furthermore, we have identified four DANs in the DL1 cluster - DAN-c1, DAN-d1, DAN-f1, and DAN-g1 - each of which innervates distinct compartments of the MB peduncle, lateral appendix, and vertical lobe. Optogenetic activation of DAN-f1 and DAN-g1 alone suffices to substitute for punishment. Furthermore, optogenetic inhibition, calcium imaging results and electron microscopy-based reconstruction of all sensory input circuits to the four DL1 DANs demonstrate that each DAN encodes a different aspect of punishment, with DAN-g1 being of central importance for the salt dependent teaching signal.

To summarize, our investigation has revealed the existence of a cellular division of labor among larval DANs concerning the transmission of dopaminergic reward (pPAM cluster) and punishment signals (DL1 cluster). Individual DANs in each cluster encode for distinct but partially overlapping aspects of the teaching signal. The striking resemblance in the organizing principle of larval DANs with that of its adult counterpart and the mammalian basal ganglion suggests that there may be a limited number of efficient neural circuit solutions available to address more complex cognitive challenges in nature.

Article activity feed

  1. eLife Assessment

    This comprehensive study presents important findings that delineate how specific dopaminergic neurons (DANs) instruct aversive learning in Drosophila larvae exposed to high salt through an integration of behavioral experiments, imaging, and connectomic analysis. The work reveals how a numerically minimal circuit achieves remarkable functional complexity, with redundancies and synergies within the DL1 cluster that challenge our understanding of how few neurons generate learning behaviors. By establishing a framework for sensory-driven learning pathways, the study makes a compelling and substantial contribution to understanding associative conditioning while demonstrating conservation of learning mechanisms across Drosophila developmental stages.

  2. Reviewer #1 (Public review):

    Summary:

    In this paper Weber et al. investigate the role of 4 dopaminergic neurons of the Drosophila larva in mediating the association between an aversive high-salt stimulus and a neutral odor. The 4 DANs belong to the DL1 cluster and innervate non-overlapping compartments of the mushroom body, distinct from those involved in appetitive associative learning. Using specific driver lines for individual neurons, the authors show that activation of the DAN-g1 is sufficient to mimic an aversive memory and it is also necessary to form a high-salt memory of full strength, although optogenetic silencing of this neuron has only a partial phenotype. The authors use calcium imaging to show that the DAN-g1 is not the only DAN responding to salt. DAN-c1 and d1 also respond to salt, but they seem to play no role for the associative memory. DAN-f1, which does not respond to salt, is able to lead to the formation of a memory (if optogenetically activated), but it is not necessary for the salt-odor memory formation in normal conditions. However, when silenced together with DAN-g1, it enhances the memory deficit of DAN-g1. Overall, this work brings evidence of a complex interaction between DL1 DANs in both the encoding of salt signals and their teaching role in associative learning, with none of them being individually necessary and sufficient for both functions.

    Strengths:

    Overall, the manuscript contributes interesting results that are useful to understand the organization and function of the dopaminergic system. The behavioral role of the specific DANs is accessed using specific driver lines which allow to test their function individually and in pairs. Moreover, the authors perform calcium imaging to test whether DANs are activated by salt, a prerequisite for inducing a negative association to it. Proper genetic controls are carried across the manuscript.

    Weaknesses:

    The authors use two different approaches to silence dopaminergic neurons: optogenetics and induction of apoptosis. The results are not always consistent, but the authors discuss these differences appropriately. In general, the optogenetic approach is more appropriate as developmental compensations are not of major interest for the question investigated.

    The physiological data would suggest the role of a certain subset of DANs in salt-odor association, but a different partially overlapping set is necessary in behavioral assays (with a partial phenotype). No manipulation completely abolishes the salt-odor association, leaving important open questions on the identity of the neural circuits involved in this behavior.

    The EM data analysis reveals a non-trivial organization of sensory inputs into DANs, but it is difficult to extrapolate a link to the functional data presented in the paper.

  3. Reviewer #2 (Public review):

    Summary:

    In this work the authors show that dopaminergic neurons (DANs) from the DL1 cluster in Drosophila larvae are required for the formation of aversive memories. DL1 DANs complement pPAM cluster neurons which are required for the formation of attractive memories. This shows the compartmentalized network organization of how an insect learning center (the mushroom body) encodes memory by integrating olfactory stimuli with aversive or attractive teaching signals. Interestingly, the authors found that the 4 main dopaminergic DL1 neurons act partially redundant, and that single cell ablation did not result in aversive memory defects. However, ablation or silencing of a specific DL1 subset (DAN-f1,g1) resulted in reduced salt aversion learning, which was specific to salt but no other aversive teaching stimuli tested. Importantly, activation of these DANs using an optogenetic approach was also sufficient to induce aversive learning in the presence of high salt. Together with the functional imaging of salt and fructose responses of the individual DANs and the implemented connectome analysis of sensory (and other) inputs to DL1/pPAM DANs this represents a very comprehensive study linking the structural, functional and behavioral role of DL1 DANs. This provides fundamental insight into the function of a simple yet efficiently organized learning center which displays highly conserved features of integrating teaching signals with other sensory cues via dopaminergic signaling.

    Strengths:

    This is a very careful, precise and meticulous study identifying the main larval DANs involved in aversive learning using high salt as a teaching signal. This is highly interesting because it allows to define the cellular substrates and pathways of aversive learning down to the single cell level in a system without much redundancy. It therefore sets the basis to conduct even more sophisticated experiments and together with the neat connectome analysis opens the possibility to unravel different sensory processing pathways within the DL1 cluster and integration with the higher order circuit elements (Kenyon cells and MBONs). The authors' claims are well substantiated by the data and balanced, putting their data in the appropriate context. The authors also implemented neat pathway analyses using the larval connectome data to its full advantage, thus providing network pathways that contribute towards explaining the obtained results.

    Weaknesses:

    Previous comments were fully addressed by the authors.

  4. Reviewer #3 (Public review):

    The study of Weber et al. provides a thorough investigation of the roles of four individual dopamine neurons for aversive associative learning in the Drosophila larva. They focus on the neurons of the DL-1 cluster which already have been shown to signal aversive teaching signals. But the authors go beyond the previous publications and test whether each of these dopamine neurons responds to salt or sugar, is necessary for learning about salt, bitter, or sugar, and is sufficient to induce a memory when optogenetically activated. In addition, previously published connectomic data is used to analyze the synaptic input to each of these dopamine neurons. The authors conclude that the aversive teaching signal induced by salt is distributed across the four DL-1 dopamine neurons, with two of them, DAN-f1 and DAN-g1, being particularly important. Overall, the experiments are well designed and performed, support the authors' conclusions, and deepen our understanding of the dopaminergic punishment system.

    Strengths:

    (1) This study provides, at least to my knowledge, the first in vivo imaging of larval dopamine neurons in response to tastants. Although the selection of tastants is limited, the results close an important gap in our understanding of the function of these neurons.
    (2) The authors performed a large number of experiments to probe for the necessity of each individual dopamine neuron, as well as combinations of neurons, for associative learning. This includes two different training regimen (1 or 3 trials), three different tastants (salt, quinine and fructose) and two different effectors, one ablating the neuron, the other one acutely silencing it. This thorough work is highly commendable, and the results prove that it was worth it. The authors find that only one neuron, DAN-g1, is partially necessary for salt learning when acutely silenced, whereas a combination of two neurons, DAN-f1 and DAN-g1, are necessary for salt learning when either being ablated or silenced.
    (3) In addition, the authors probe whether any of the DL-1 neurons is sufficient for inducing an aversive memory. They found this to be the case for two of the neurons, largely confirming previous results obtained by a different learning paradigm, parameters and effector.
    (4) This study also takes into account connectomic data to analyze the sensory input that each of the dopamine neurons receives. This analysis provides a welcome addition to previous studies and helps to gain a more complete understanding. The authors find large differences in inputs that each neuron receives, and little overlap in input that the dopamine neurons of the "aversive" DL-1 cluster and the "appetitive" pPAM cluster seem to receive.
    (5) Finally, the authors try to link all the gathered information in order to describe an updated working model of how aversive teaching signals are carried by dopamine neurons to the larva's memory center. This includes important comparisons both between two different aversive stimuli (salt and nociception) and between the larval and adult stages.

  5. Author response:

    The following is the authors’ response to the original reviews

    Public reviews:

    Reviewer #1 (Public Review):

    Summary:

    In this paper, Weber et al. investigate the role of 4 dopaminergic neurons of the Drosophila larva in mediating the association between an aversive high-salt stimulus and a neutral odor. The 4 DANs belong to the DL1 cluster and innervate non-overlapping compartments of the mushroom body, distinct from those involved in appetitive associative learning. Using specific driver lines, they show that activation of the DAN-g1 is sufficient to mimic an aversive memory and it is also necessary to form a high-salt memory of full strength, although optogenetic silencing of this neuron only partially affects the performance index. The authors use calcium imaging to show that the DAN-g1 is not the only one that responds to salt. DAN-c1 and d1 also respond to salt, but they seem to play no role in the assays tested. DAN-f1, which does not respond to salt, is able to lead to the formation of memory (if optogenetically activated), but it is not necessary for the salt-odor memory formation in normal conditions. However, silencing of DAN-f1 together with DAN-g1, enhances the memory deficit of DAN-g1.

    Strengths:

    The paper therefore reveals that also in the Drosophila larva as in the adult, rewards and punishments are processed by exclusive sets of DANs and that a complex interaction between a subset of DANs mediates salt-odor association.

    Overall, the manuscript contributes valuable results that are useful for understanding the organization and function of the dopaminergic system. The behavioral role of the specific DANs is accessed using specific driver lines which allow for testing of their function individually and in pairs. Moreover, the authors perform calcium imaging to test whether DANs are activated by salt, a prerequisite for inducing a negative association with it. Proper genetic controls are carried across the manuscript.

    Weaknesses:

    The authors use two different approaches to silence dopaminergic neurons: optogenetics and induction of apoptosis. The results are not always consistent, and the authors could improve the presentation and interpretation of the data. Specifically, optogenetics seems a better approach than apoptosis, which can affect the overall development of the system, but apoptosis experiments are used to set the grounds of the paper.

    The physiological data would suggest the role of a certain subset of DANs in salt-odor association, but a different partially overlapping set seems to be necessary. This should be better discussed and integrated into the author's conclusion. The EM data analysis reveals a non-trivial organization of sensory inputs into DANs and it is hard to extrapolate a link to the functional data presented in the paper.

    We would like to thank reviewer 1 for the positive evaluation of our work and for the critical suggestions for improvement. In the new version of the manuscript, we have centralized the optogenetic results and moved some of the ablation experiments to the Supplement. We also discuss in detail the experimental differences in the results. In addition, we have softened our interpretation of the specificity of memory for salt. As a result, we now emphasize more the general role of DANs for aversive learning in the larva. These changes are now also summarized and explained more simply and clearly in the Discussion, along with a revised discussion of the EM data.

    Reviewer #2 (Public Review):

    Summary:

    In this work, the authors show that dopaminergic neurons (DANs) from the DL1 cluster in Drosophila larvae are required for the formation of aversive memories. DL1 DANs complement pPAM cluster neurons which are required for the formation of attractive memories. This shows the compartmentalized network organization of how an insect learning center (the mushroom body) encodes memory by integrating olfactory stimuli with aversive or attractive teaching signals. Interestingly, the authors found that the 4 main dopaminergic DL1 neurons act redundantly, and that single-cell ablation did not result in aversive memory defects. However, ablation or silencing of a specific DL1 subset (DAN-f1,g1) resulted in reduced salt aversion learning, which was specific to salt but no other aversive teaching stimuli were tested. Importantly, activation of these DANs using an optogenetic approach was also sufficient to induce aversive learning in the presence of high salt. Together with the functional imaging of salt and fructose responses of the individual DANs and the implemented connectome analysis of sensory (and other) inputs to DL1/pPAM DANs, this represents a very comprehensive study linking the structural, functional, and behavioral role of DL1 DANs. This provides fundamental insight into the function of a simple yet efficiently organized learning center which displays highly conserved features of integrating teaching signals with other sensory cues via dopaminergic signaling.

    Strengths:

    This is a very careful, precise, and meticulous study identifying the main larval DANs involved in aversive learning using high salt as a teaching signal. This is highly interesting because it allows us to define the cellular substrates and pathways of aversive learning down to the single-cell level in a system without much redundancy. It therefore sets the basis to conduct even more sophisticated experiments and together with the neat connectome analysis opens the possibility of unraveling different sensory processing pathways within the DL1 cluster and integration with the higher-order circuit elements (Kenyon cells and MBONs). The authors' claims are well substantiated by the data and clearly discussed in the appropriate context. The authors also implement neat pathway analyses using the larval connectome data to its full advantage, thus providing network pathways that contribute towards explaining the obtained results.

    Weaknesses:

    While there is certainly room for further analysis in the future, the study is very complete as it stands. Suggestions for clarification are minor in nature.

    We would like to thank reviewer 2 for the positive evaluation of our work. In fact, follow-up work is already underway to further analyze the role of the individual DL1 DANs. We have addressed the constructive and detailed suggestions for improvement in our point-by-point responses in the “Recommendations for the authors” section.

    Reviewer #3 (Public Review):

    The study of Weber et al. provides a thorough investigation of the roles of four individual dopamine neurons for aversive associative learning in the Drosophila larva. They focus on the neurons of the DL-1 cluster which already have been shown to signal aversive teaching signals. However, the authors go far beyond the previous publications and test whether each of these dopamine neurons responds to salt or sugar, is necessary for learning about salt, bitter, or sugar, and is sufficient to induce a memory when optogenetically activated. In addition, previously published connectomic data is used to analyze the synaptic input to each of these dopamine neurons. The authors conclude that the aversive teaching signal induced by salt is distributed across the four DL-1 dopamine neurons, with two of them, DAN-f1 and DAN-g1, being particularly important. Overall, the experiments are well designed and performed, support the authors' conclusions, and deepen our understanding of the dopaminergic punishment system.

    Strengths:

    (1) This study provides, at least to my knowledge, the first in vivo imaging of larval dopamine neurons in response to tastants. Although the selection of tastants is limited, the results close an important gap in our understanding of the function of these neurons.

    (2) The authors performed a large number of experiments to probe for the necessity of each individual dopamine neuron, as well as combinations of neurons, for associative learning. This includes two different training regimens (1 or 3 trials), three different tastants (salt, quinine, and fructose) and two different effectors, one ablating the neuron, the other one acutely silencing it. This thorough work is highly commendable, and the results prove that it was worth it. The authors find that only one neuron, DAN-g1, is partially necessary for salt learning when acutely silenced, whereas a combination of two neurons, DAN-f1 and DAN-g1, are necessary for salt learning when either being ablated or silenced.

    (3) In addition, the authors probe whether any of the DL-1 neurons is sufficient for inducing an aversive memory. They found this to be the case for three of the neurons, largely confirming previous results obtained by a different learning paradigm, parameters, and effector.

    (4) This study also takes into account connectomic data to analyze the sensory input that each of the dopamine neurons receives. This analysis provides a welcome addition to previous studies and helps to gain a more complete understanding. The authors find large differences in inputs that each neuron receives, and little overlap in input that the dopamine neurons of the "aversive" DL-1 cluster and the "appetitive" pPAM cluster seem to receive.

    (5) Finally, the authors try to link all the gathered information in order to describe an updated working model of how aversive teaching signals are carried by dopamine neurons to the larva's memory center. This includes important comparisons both between two different aversive stimuli (salt and nociception) and between the larval and adult stages.

    Weaknesses:

    (1) The authors repeatedly claim that they found/proved salt-specific memories. I think this is problematic to some extent.

    (1a) With respect to the necessity of the DL-1 neurons for aversive memories, the authors' notion of salt-specificity relies on a significant reduction in salt memory after ablating DAN-f1 and g1, and the lack of such a reduction in quinine memory. However, Fig. 5K shows a quite suspicious trend of an impaired quinine memory which might have been significant with a higher sample size. I therefore think it is not fully clear yet whether DAN-f1 and DAN-g1 are really specifically necessary for salt learning, and the conclusions should be phrased carefully.

    (1b) With respect to the results of the optogenetic activation of DL-1 neurons, the authors conclude that specific salt memories were established because the aversive memories were observed in the presence of salt. However, this does not prove that the established memory is specific to salt - it could be an unspecific aversive memory that potentially could be observed in the presence of any other aversive stimuli. In the case of DAN-f1, the authors show that the neuron does not even get activated by salt, but is inhibited by sugar. Why should activation of such a neuron establish a specific salt memory? At the current state, the authors clearly showed that optogenetic activation of the neurons does induce aversive memories - the "content" of those memories, however, remains unknown.

    (2) In many figures (e.g. figures 4, 5, 6, supplementary figures S2, S3, S5), the same behavioural data of the effector control is plotted in several sub-figures. Were these experiments done in parallel? If not, the data should not be presented together with results not gathered in parallel. If yes, this should be clearly stated in the figure legends.

    We would also like to thank reviewer 3 for his positive assessment of our work. As already mentioned by reviewer 1, we understand the criticism that the salt specificity for which the individual DANs are coded is not fully always supported by the results of the work. We have therefore rewritten the relevant passages, which are also cited by the reviewer. We have also included the second point of criticism and incorporated it into our manuscript. As the control groups were always measured in parallel with the experimental animals, we can also present the data together in a sub-figure. We clearly state this now in the revised figure legends.

    Summary of recommendations to authors:

    Overall, the study is commendable for its systematic approach and solid methodology. Several weaknesses were identified, prompting the need for careful revisions of the manuscript:

    We thank the reviewers for the careful revision of our manuscript. In the subsequent sections, we aim to address their concerns as thoroughly as possible. A comprehensive one-to-one listing can be found below.

    (1) The authors should reconsider their assertion of uncovering a salt-specific memory, as the evidence does not conclusively demonstrate the exclusive necessity of DAN-f1 and DAN-g1 for salt learning. In particular, the optogenetic activation of DAN-f1 leads to plasticity but this might not be salt-specific. The precise nature of the memory content remains elusive, warranting a nuanced rephrasing of the conclusions.

    We only partially agree – optogenetic activation of DANs does not really allow to comment on its salt-specificity, true. However, we used high-salt concentrations during test. Over the years, the Gerber lab nicely demonstrated in several papers that larvae recall an aversive odor-salt memory only if salt is present during test (Gerber and Hendel, 2006; Niewalda et al 2008; Schleyer et al. 2011; Schleyer et al. 2015). The used US has to be present during test. Even at the same concentration other aversive stimuli (e.g. bitter quinine) are not able to allow the larvae to recall this particular type of memory. So, if the optogenetic activation of DAN-f1 establishes a memory that can be recalled on salt, we argue that it has to encode aspects of the salt information. On the other hand, only for DAN-g1 we see the necessity for salt learning. And – although (based on the current literature) very unlikely, we cannot fully exclude that the activation of DAN-f1 establishes a yet unknown type of memory that can be also recalled on a salt plate. Therefore, we partially agree and accordingly have rephrased the entire manuscript to avoid an over-interpretation of our data. Throughout the manuscript we avoid now to use the term salt-specific memory but rather describe the type of memory as aversive memory.

    (2) A thorough examination or discussion about the potential influence of blue light aversion on behavioral observations is necessary to ensure a balanced interpretation of the findings.

    To address this point every single behavioral experiment that uses optogenetic blue light activation runs with appropriate and mandatory controls. For blue light activation experiments, two genetic controls are used that either get the same blue light treatment (effector control, w1118>UAS-ChR2XXL) or no blue light treatment (dark control, XY-split-Gal4>UAS-ChR2XXL). For blue light inactivation experiments one group is added that has exactly the same genotype but did not receive food containing retinal. These experiments show that blue light exposure itself does not induce an aversive nor positive memory and blue light exposure does not impair the establishment of odor-high salt memory. In addition, we used the latest established transgenes available. ChR2XXL is very sensitive to blue light. Only 220 lux (60 µW/cm²) were necessary to obtain stable results. In our hands – short term exposure for up to 5 minutes with such low intensities does not induce a blue light aversion. Following the advice of the reviewer, we also address this concern by adding several sentences into the related results and methods sections.

    (3) The authors should address the limitations associated with the use of rpr/hid for neuronal ablations, such as the effects of potential developmental compensation.

    We agree with this concern. It is well possible that the ablation experiments induce compensatory effects during larval development. Such an effect may be the reason for differences in phenotypes when comparing hid,rpr ablation with optogenetic inhibition. This is now part of the discussion. In addition, we evaluated if the ablation worked in our experiments. So far controls were missing that show that the expression of hid,rpr really leads to the ablation of DANs. We now added these experiments and clearly show anatomically that the DANs are ablated (related to figure 4-figure supplement 6).

    (4) While the connectome analysis offers valuable insights into the observed functions of specific DANs in relation to their extrinsic (sensory) and intrinsic (state) inputs, integrating this data more cohesively within the manuscript through careful rewriting would enhance the coherence of the study.

    We understand this concern. Therefore, the new version of our manuscript is now intensifying the inclusion of the EM data in our interpretation of the results. Throughout the entire manuscript we have now rewritten the related parts. We have also completely revised the corresponding section in the results chapter.

    (5) More generally, the authors are encouraged to discuss internal discrepancies in the results of their functional manipulation experiments.

    Thank you for this suggestion. We do of course understand that we have not given the different results enough space in the discussion. We have now changed this and have been happy to comprehensively address the concern.

    Recommendations for the authors:

    Reviewer #1 (Recommendations For The Authors):

    Here are some suggestions for clarification and improvement of the manuscript:

    (1) The authors should discuss why the silencing experiment with TH-GAL4 (Fig. 1) does not abolish memory formation (I assume that the PI should go to zero). Does it mean that other non-TH neurons are involved in salt-odor memory formation? Are there other lines that completely abolish this type of learning?

    Thank you very much for highlighting this crucial point. Indeed, the functional intervention does not completely eliminate the memory. There could be several reasons, or a combination thereof, for this outcome. For instance, it's plausible that the UAS-GtACR2 effector doesn't entirely suppress the activity of dopaminergic neurons. Additionally, the memory may comprise different types, not all of which are linked to dopamine function. It's also noteworthy that TH-Gal4 doesn't encompass all dopaminergic neurons – even a neuron from the DL1 cluster is absent (as previously reported in Selcho et al., 2009). Considering we're utilizing high salt concentrations in this experiment, it's conceivable that non gustatory-driven memories are formed based solely on the systemic effects of salt (e.g., increased osmotic pressure). These possibilities are now acknowledged in the text.

    (2) The Rpr experiments in Fig. 4 do not lead to any phenotype and there is a general assumption that the system compensates during development. However, there is no demonstration that Rpr worked or that development compensated for that. What do we learn from these data? Would it make sense to move it to supplement to make the story more compact? In addition: the conclusion at L 236 "DL1.... Are not individually necessary" is later disproved by optogenetic silencing. Similarly, optogenetic silencing of f1+g1 is affecting 1X and 3X learning, but not when using Rpr. Moreover, Rpr wdid not give any phenotype in other data in the supplementary material. I'm not sure how valid these results are.

    We acknowledge this concern and have actively deliberated various options for restructuring the presented ablation data. Ultimately, we reached a consensus that relocating Figure 4 to the supplement is warranted. Furthermore, corresponding adjustments have been made in the text. This decision amplifies the significance of the optogenetic results. In addition, we also addressed the other part of the concern. We examined the efficacy of hid and rpr in our experiments. Indeed, we successfully ablated specific DANs, as illustrated in the new anatomical data presented in Figure 4- figure supplement 6, which strengthens the interpretation of the hid,rpr experiments.

    (3) In most figures that show data for 1X and 3X training, there is no difference between these two conditions (I would suggest moving one set as a supplement). When a difference appears (Fig.5A-D) the implications are not discussed properly. Is it known that some circuits are necessary for the 1X but not for the 3X protocol? Is that a reasonable finding? I would expect the opposite, but I might lack of knowledge here. However, the optogenetic silencing of the same neurons in Figure 7 shows the same phenotype for 1X and 3X. Again, the validity of the Rpr experiments seems debatable.

    Different training protocols lead to different memory phases (STM and STM+ARM). We have shown that in the past in Widmann et al. 2016. Therefore, we are convinced that it makes sense to keep both data sets in the main manuscript. However, we agree that this was not properly introduced and discussed and therefore made the respective changes in the manuscript.

    (4) In Figure 3, it is unclear what the responses were tested against. Since they are so small and noisy there would be a need for a control. Moreover, in some cases, it looks like the DF/F is normalized to the wrong value: e.g. in DAN-c1 100mM, the activity in 0-10s is always above zero, and in pPAM with fructose is always below zero. This might not have any consequence on the results but should be adjusted.

    Thank you very much for your criticism, which we greatly appreciate. We have carefully re-examined the data and found that there was a mistake for the normalization of the values. We made the necessary adjustments to the evaluation, as per your suggestions. The updated figures, figure legends, and results have been incorporated into the new version of the manuscript. As noted by the reviewer, these corrections have not altered the interpretation of the data or the primary responses of the various DANs.

    (5) In the abstract: "Optogenetic activation of DAN-f1 and DAN-g1 alone suffices to substitute for salt punishment... Each DAN encodes a different aspect of salt punishment". These sentences might be misleading and an overstatement: only DAN-g1 shows a clear role, while the function of the other DANs in the context of salt-odor learning remains obscure.

    We have refined the respective part of the abstract accordingly. Consequently, we have reworded the related section, aiming to avoid any exaggeration.

    (6) The physiology is done in L1 larvae but behavior is tested in L3 larvae. There could be a change in this time that could explain the salt responses in c1 and d1 but no role in salt-odor learning?

    While we cannot dismiss the possibility of a developmental change from L1 to L3, a comparison of the anatomical data of the DL1 DANs from electron microscopy (EM) and light microscopy (LM) data indicates that their overall morphology remains consistent. However, it's important to note that this observation does not analyse the physiological aspects of these cells. Consequently, we have incorporated this concern into the discussion of the revised version of the manuscript.

    (7) The introduction needs some editing starting at L 129, as it ends with a discussion of a previously published EM data analysis. I would rather suggest stating which questions are addressed in this paper and which methods will be used and perhaps a hint on the results obtained.

    We understand the concern. We have added a concise paragraph to the conclusion of the introduction, highlighting the biological question, technical details, and a short hint on the acquired findings.

    (8) It is clear to me that the presentation of salt during the test is necessary for recall, however in L 166 I don't understand the explanation: how is the memory used in a beneficial way in the test? The salt is present everywhere and the odor cue is actually useless to escape it.

    Extensive research, exemplified by studies such as Schleyer et al. (2015) published in Elife, clearly demonstrates that the recall of odor-high salt memory occurs exclusively when tested on a high salt plate. Even when tested on a bitter quinine plate, the aversive memory is not recalled. This phenomenon is attributed to the triggering of motivation to recall the memory by the omnipresent abundance of the unconditioned stimulus (US) during the test, which in our case is high salt. Furthermore, the concentration of the stimulus plays a crucial role (Schleyer et al. 2011). The odor cue indicates where the situation could potentially be improved; however, if high salt is absent, this motivational drive diminishes as there is no memory present to enhance the already favorable situation. Additionally, the motivation to evade the omnipresent and unpleasant high salt stimulus persists throughout the entire 5-minute test period.

    (9) L288: the fact that f1 shows a phenotype in this experiment does not mean that it encodes a salt signal, indeed it does not respond to salt. It perhaps induces a plasticity that can be recalled by salt, but not necessarily linked to salt. The synergy between f1 and g1 in the salt assay was postulated based on exp with Rpr, but the validity of these experiments is dubious. I'm not sure there is sufficient evidence from Figures 6 and 7 to support a synergistic action between f1 and g1.

    It is true that DAN-f1 alone is not necessary for mediating a high salt teaching signal based on ablation, optogenetic inhibition and even physiology. However, optogenetic activation alone shows a memory tested on a salt plate. Given the logic explained above that is accepted by several publications, we would like to keep the statement. Especially as the joined activation with DAN-g1 gives rise to significant higher or lower values after joined optogenetic activation or inactivation (Figure 5E and F, Figure 6E and F in the new version). Nevertheless, we have modified the sentence. In the text we describe these effects now as “these results may suggest that DAN-f1 and DAN-g1 encode aspects of the natural aversive high salt teaching signal under the conditions that we tested”. We think that this is an appropriate and three-fold restricted statement. Therefore, we would like to keep it in this restricted version. However, we are happy to reconsider this if the reviewer thinks it is critical.

    (10) I find the EM analysis hard to read. First of all, because of the two different graphical representations used in Fig. 8, wouldn't one be sufficient to make the point? Secondly, I could not grasp a take-home-message: what do we learn from the EM data? Do they explain any of the results? It seems to me that they don't provide an explanation of why some DL1 neurons respond to salt and others don't.

    We understand that the EM analysis is hard to read and have now carefully rewritten this part of the manuscript. See also general concern 4 above. The main take home message is not to explain why some DL1 neurons respond to salt and other do not. This cannot be resolved due to the missing information on the salt perceiving receptor cells. Unfortunately, we miss the peripheral nervous system in the EM - the first layer of salt information processing. However, our analysis shows clearly that the 4 DANs have their own identity based on their connectivity. None of them is the same – but to a certain extent similarities exist. This nicely reflects the physiological and behavioral results. We have now clarified that in the result to ease the understanding for the readership. In addition, we also clearly state that we don’t address the point why some DL1 neurons respond to salt and why others don’t respond.

    (11) Do the manipulations (activation and silencing) affect odor preference in the presence of salt? Did the authors test that the two odors do not drive different behaviors on the salty plate? Or did they only test the odor preference on plain agarose? Can we exclude a role for the DAN in driving multisensory-driven innate behavior?

    Innate odor preferences are not changed by the presence of salt or even other tastants (this work but see also Schleyer et al 2015, Figure 3, Elife). Even the naïve choice between two odors is the same if tested in the presence of different tastants (Schleyer et al 2015, Figure 3, Elife). This shows – at least for the tested stimuli and conditions – that are similar to the ones that we use – that there is no multisensory-driven innate odor-taste behavior. Therefore – at least to our knowledge - experiments as the ones suggested by the reviewer were never done in larval odor-taste learning studies. Therefore, we suggest that DAN activation has no effect on innate larval behavior. However, we are happy to reconsider this if the reviewer thinks it is critical.

    (12) L 280: the authors generalize the conclusion to all DL1-DANs, but it does not apply to c1 and d1.

    Thanks for this comment. We deleted that sentence as suggested and thus do not anymore generalize the conclusion to all DL-DANs.

    (13) L345: I do not see the described differences in Fig. 8F, presynaptic sites of both types seem to appear in rather broad regions: could the author try to clarify this?

    We understand that the anatomical description of the data is often hard to read. Especially to readers that are not used to these kind of figures. We have therefore modified the text to ease the understanding and clarify the difference in the labeled brain regions for the broad readership.

    (14) L373: the conclusion on c1 is unsupported by data: this neuron responds to both salt and fructose (Figure 3 ) while the conclusion is purely based on EM data analysis.

    The sentence is not a conclusion but a speculation and we also list the cell's response to positive and negative gustatory stimuli. Therefore, we do not understand exactly what the reviewer means here. However, we have tried to address the criticism and have revised the sentences.

    (15) L385: the data on d1 seem to be inconsistent with Eschbach 2020, but the authors do not discuss if this is due to the differential vs absolute training, or perhaps the presence of the US during the test (which does not seem to be there in Eschbach, 2020) - is the training protocol really responsible for this inconsistency? For f1 the data seem to be consistent across these studies. The authors should clarify how the exp in Fig 6 differs from Eschbach, 2020 and how one could interpret the differences.

    True. This concern is correct. We now discuss the difference in more detail. Eschbach et al. used Cs-Crimson as a genetic tool, a one odor paradigm with 3 training cycles, and no gustatory cues in their approach. These differences are now discussed in the new version of the manuscript.

    (16) L460-475 A long part of this paragraph discusses the similarities between c1 and d1 and corresponding PPL1 neurons in the adult fly. However, c1 and d1 do not really show any phenotype in this paper, I'm not sure what we learn from this discussion and how much this paper can contribute to it. I would have wished for a discussion of how one could possibly reconcile the observed inconsistencies.

    Based on the comments of the different reviewers several paragraphs in the discussion were modified. We agree that the part on the larval-adult comparison is quite long. Thus we have shortened it as suggested by the reviewer.

    Minor corrections:

    L28 "resultant association" maybe resulting instead.

    L55 "animals derive benefit": remove derive.

    L78 "composing 12,000 neurons": composed of.

    L79 what is stable in a "stable behavioral assay"?

    L104: 2 times cluste.

    L122: "DL1 DANs are involved" in what?

    Fig. 1 please check subpanels labels, D repeats.

    L 362: "But how do individual neurons contribute to the teaching signal of the complete cluster?" I don't understand the question.

    L364 I did not hear before about the "labeled line hypothesis" in this context - could the author clarify?

    L368: edit "combinatorically".

    L390: "current suppression" maybe acute suppression.

    L 400 I'm not sure what is meant by "judicious functional configuration" and "redundancy". The functions of these cells are not redundant, and no straightforward prediction of their function can be done from their physiological response to salt.

    Thanks a lot for your in detail review of our manuscript. We welcome your well-taken concerns and have made the requested changes for all points that you have raised.

    Reviewer #2 (Recommendations For The Authors):

    (1) In Figure 1 the reconstruction of pPAM and DL1 DANs shows the compartmentalized innervation of the larval MB. However, the images are a bit low in color contrast to appreciate the innervation well. In particular in panel B, it is hard to identify the innervated MB body structure. A schematic model of the larval MB and DAN innervation domains like in Fig. 2A would help to clarify the innervation pattern to the non-specialist.

    We understand this concern and have changed figure 1 as suggested by the reviewer. A schematic model of the MB and DANs is now presented already in figure 1 as well as the according supplemental figure.

    (2) Blue light itself can be aversive for larvae and thus interfere with the aversive learning paradigm. Does the given Illuminance (220 lux) used in these experiments affect the behavior and learning outcome?

    Yes, in former times high intensities of blue light were necessary to trigger the first generation optogenetic tools. The high intensity blue light itself was able to establish an aversive memory (e.g. Rohwedder et al. 2016). Usage of the second generation optogenetic tools allowed us to strongly reduce the applied light intensity. Now we use 220 lux (equal to 60 µW/cm2). Please note that all Gal4 and UAS controls in the manuscript are nonsignificant different from zero. The mild blue light stimulation therefore does not serve as a teaching signal and has neither an aversive nor an appetitive effect. Furthermore, we use this mild light intensity for several other behavioral paradigms (locomotion, feeding, naïve preferences) and have never seen an effect on the behavior.

    (3) Fig.2: Except for MB054B-Gal4 only the MB expression pattern is shown for other lines. Is there any additional expression in other cells of the brain? In the legend in line 761, the reporter does not show endogenous expression, rather it is a fluorescent reporter signal labeling the mushroom body.

    The lines were initially identified by a screen on larval MB neurons done together with Jim Truman, Marta Zlatic and Bertram Gerber. Here full brain scans were always analyzed. These images can be seen in Eschbach et al. 2020, extended figure 1. Neither in their evaluation nor in our anatomical evaluation (using a different protocol) additional expression in brain cells was detectable. We also modified the figure legend as suggested.

    (4) Fig.3: Precise n numbers per experiment should be stated in the figure legend.

    True, we now present n numbers per experiment whenever necessary.

    (5) Fig.4: Have the authors confirmed complete ablation of the targeted neuron using rpr/hid? Ablations can be highly incomplete depending on the onset and strength of Gal4 expression, leaving some functionality intact. While the ablation experiments are largely in line with the acute silencing of single DANs during high salt learning performed later on (Fig.7), there is potentially an interesting aspect of developmental compensation hidden in this data. Not a major point, but potentially interesting to check.

    We agree with this criticism. We have not tested if the expression of hid,rpr in DL1 DANs does really ablate them. Therefore we did an additional experiment to show that. The new data is now present as a supplemental figure (Figure 4- figure supplement 6). The result shows that expression of hid,rpr ablates also DL1 DANs similar to earlier experiments where we used the same effectors to ablate serotoniergic neurons (Huser et al., 2012, figure 5).

    (6) The performance index in Fig. 4 and 5 sometimes seems lower and the variability is higher than in some of the other experiments shown. Is this due to the high intrinsic variability of these particular experiments, or the background effects of the rpr/hid or splitGal4 lines?

    The general variability of these experiments is within the expected and known borders. In these kind of experiments there is always some variation due to several external factors (e.g. experimental time over the year). Therefore it is always important to measure controls and experimental animals at the same time. Of course that’s what we did and we only compare directly results of individual datasets. But not between different datasets. This is further hampered given that the experiments of Figure 4 (now Figure 4- figure supplement 1) and Figure 5 (now Figure 4) differ in several parameters from other learning experiments presented later in the text. Optogenetic activation uses blue light stimulation instead of “real world” high salt. Most often direct activation of specific DANs in the brain is more stable than the external high salt stimulation. Also optogenetic inactivation uses blue light stimulation and also retinal supplemented food. Both factors can affect the measurement. We thus want to argue that it is for each experiment most often the particular parameters that affect the variability of the results rather than background effects of the rpr/hid and split-Gal4 lines.

    (7) Fig.7: This is a neat experiment showing the effects of acute silencing of individual DL1 DANs. As silencing DAN-f1/g1 does not result in complete suppression of aversive learning, it would be highly interesting to test (or speculate about) additive or modulatory effects by the other DANs. Dan-c-1/d-1 also responds to high salt but does not show function on its own in these assays. I am aware that this is currently genetically not feasible. It would however be a nice future experiment.

    True, we were intensively screening for DL1 cluster specific driver lines that cover all 4 DL1 neurons or other combinations than the ones we tested. Unfortunately, we did not succeed in identifying them. Nevertheless, we will further screen new genetic resources (e.g. Meissner et al., 2024, bioRxiv) to expand our approach in future experiments. Please also see our comment on concern 1 of reviewer 1 for further technical limitations and biological questions that can also potentially explain the absence of complete suppression of high salt learning and memory. Some of these limitations are now also mentioned and discussed in the new version of the manuscript.

    (8) The discussion is excellent. I would just amend that it is likely that larval DAN-c1, which has high interconnectivity within the larval CNS, is likely integrating state-dependent network changes, similar to the role of some DANs in innate and state-dependent preference behavior. This might contribute to modulating learned behavior depending on the present (acute) and previous environmental conditions.

    Thanks a lot for bringing this up. We rewrote this part and added a discussion on recent work on DAN-c1 function in larvae as well as results on DAN function in innate and state-dependent preference behavior.

    (9) Citation in line 1115 missing access information: "Schnitzer M, Huang C, Luo J, Je Woo S, Roitman L, et al. 2023. Dopamine signals integrate innate and learned valences to regulate memory dynamics. Research Square".

    Unfortunately this escaped our notice. The paper is now published in Nature: Huang, C., Luo, J., Woo, S.J. et al. Dopamine-mediated interactions between short- and long-term memory dynamics. Nature 634, 1141–1149 (2024). https://doi.org/10.1038/s41586-024-07819-w. We have now changed the citation. The new citation includes the missing access information.

    Reviewer #3 (Recommendations For The Authors):

    Regarding my issue about salt specificity in the public review, I want to make clear that I do not suggest additional experiments, but to be very careful in phrasing the conclusions, in particular whenever referring to the experiments with optogenetic activation. This includes presenting these experiments as "(salt) substitution" experiments - inferring that the optogenetic activation would substitute for a natural salt punishment. As important and interesting as the experiments are, they simply do not allow such an interpretation at this point.

    Results, line 140ff: When presenting the results regarding TH-Gal4 crossed to ChR2-XXL, please cite Schroll et al. 2006 who demonstrated the same results for the first time.

    Thanks for mentioning this. We now cite Schroll et al. 2006 here in the text of the manuscript.

    Figure 3: The subfigure labels (ABC) are missing.

    Unfortunately this escaped our notice. Thanks a lot – we have now corrected this mistake.

    Figure 5: For I and L, it reads "salt replaced with fru", but the sketch on the left shows salt in the test. I assume that fructose was not actually present in the test, and therefore the figure can be misleading. I suggest separate sketches. Also, I and L are not mentioned in the figure legend.

    True, this is rather confusing. Based on the well taken concern we have changed the figure by adding a new and correct scheme for sugar reward learning that does not symbolize fructose during test.

    Figure S1: The experimental sketches for E,F and G,H seem to be mixed up.

    We thank the reviewer for bringing this up. In the new version we corrected this mistake.

    Figure S5: There are three sub-figures labelled with B. Please correct.

    Again, thanks a lot. We made the suggested correction in Figure S5.

    Discussion, line 353ff: this and the following sentences can be read as if the authors have discovered the DL-1 neurons as aversive teaching mediators in this study. However, Eschbach et al. 2020 already demonstrated very similar results regarding the optogenetic activation of single DL-1 DANs. I suggest to rephrase and cite Eschbach et al. 2020 at this point.

    That is correct. Our focus was on the gustatory pathway. The original discovery was made by Eschbach et al. We have now corrected this in the discussion and clarified our contribution. It was never our intention to hide this work, as the laboratory was also involved. Nevertheless, this is an annoying omission on our side.

    Line 385-387: this sentence is only correct with respect to Eschbach et al. 2020. Weiglein et al. 2021 used ChR2-XXL as an effector, but another training regimen.

    We understand this criticism. Therefore, we changed the sentence as suggested by the reviewer. See also our response on concern 15 of reviewer 1.

    Line 389ff: I do not understand this sentence. What is meant by persistent and current suppression of activity? If this refers to the behavioural experiments, it is misleading as in the hid, reaper experiments neurons are ablated and not suppressed in activity.

    We made the requested changes in the text. It is true that the ablation of a neuron throughout larval life is different from constantly blocking the output of a persisting neuron.

    Methods, line 615 ff: the performance index is said to be calculated as the difference between the two preferences, but the equation shows the average of the preferences.

    Thanks a lot. We are sorry for the confusion. We have carefully rewritten this part of the methods section to avoid any misunderstanding.

    When discussing the organization of the DL1 cluster, on several occasions I have the impression the authors use the terms "redundant" and "combinatorial" synonymously. I suggest to be more careful here. Redundancy implies that each DAN in principle can "do the job", whereas combinatorial coding implies that only a combination of DANs together can "do the job". If "the job" is establishing an aversive salt memory, the authors' results point to redundancy: no experimental manipulation totally abolished salt learning, implying that the non-manipulated neurons in each experiment sufficed to establish a memory; and several DANs, when individually activated, can establish an aversive memory, implying that each of them indeed can "do the job".

    Based on this concern we have rewritten the discussion as suggested to be more precise when talking about redundancy or combinatorial coding of the aversive teaching signal. Basically, we have removed all the combinatorial terms and replaced them by the term “redundancy”.

    The authors mix parametric and non-parametric statistical tests across the experiments dependent on whether the distribution of the data is normal or not. It would help readers if the authors would clearly state for which data which tests were used.

    We understand the criticism and now have added an additional supplemental file that includes all the information on the statistical tests applied and the distribution of the data.

  6. eLife assessment:

    This comprehensive study presents valuable results that delineate the involvement of a small subset of (DL1) dopaminergic neurons in the Drosophila larva's aversive learning response to high salt. Systematic loss-of-functional and gain-of-function manipulations coupled with in-vivo calcium imaging offer compelling evidence for the pivotal roles of these neurons, thereby advancing our understanding of the cellular mechanisms underlying associative conditioning. Despite its report of notable similarities between the learning mechanisms of learning in flies and mammals, the work underscores the necessity to further elucidate the interplay between aversive and appetitive pathways in future work.

  7. Reviewer #1 (Public Review):

    Summary:
    In this paper, Weber et al. investigate the role of 4 dopaminergic neurons of the Drosophila larva in mediating the association between an aversive high-salt stimulus and a neutral odor. The 4 DANs belong to the DL1 cluster and innervate non-overlapping compartments of the mushroom body, distinct from those involved in appetitive associative learning. Using specific driver lines, they show that activation of the DAN-g1 is sufficient to mimic an aversive memory and it is also necessary to form a high-salt memory of full strength, although optogenetic silencing of this neuron only partially affects the performance index. The authors use calcium imaging to show that the DAN-g1 is not the only one that responds to salt. DAN-c1 and d1 also respond to salt, but they seem to play no role in the assays tested. DAN-f1, which does not respond to salt, is able to lead to the formation of memory (if optogenetically activated), but it is not necessary for the salt-odor memory formation in normal conditions. However, silencing of DAN-f1 together with DAN-g1, enhances the memory deficit of DAN-g1.

    Strengths:
    The paper therefore reveals that also in the Drosophila larva as in the adult, rewards and punishments are processed by exclusive sets of DANs and that a complex interaction between a subset of DANs mediates salt-odor association.
    Overall, the manuscript contributes valuable results that are useful for understanding the organization and function of the dopaminergic system. The behavioral role of the specific DANs is accessed using specific driver lines which allow for testing of their function individually and in pairs. Moreover, the authors perform calcium imaging to test whether DANs are activated by salt, a prerequisite for inducing a negative association with it. Proper genetic controls are carried across the manuscript.

    Weaknesses:
    The authors use two different approaches to silence dopaminergic neurons: optogenetics and induction of apoptosis. The results are not always consistent, and the authors could improve the presentation and interpretation of the data. Specifically, optogenetics seems a better approach than apoptosis, which can affect the overall development of the system, but apoptosis experiments are used to set the grounds of the paper.

    The physiological data would suggest the role of a certain subset of DANs in salt-odor association, but a different partially overlapping set seems to be necessary. This should be better discussed and integrated into the author's conclusion. The EM data analysis reveals a non-trivial organization of sensory inputs into DANs and it is hard to extrapolate a link to the functional data presented in the paper.

  8. Reviewer #2 (Public Review):

    Summary:
    In this work, the authors show that dopaminergic neurons (DANs) from the DL1 cluster in Drosophila larvae are required for the formation of aversive memories. DL1 DANs complement pPAM cluster neurons which are required for the formation of attractive memories. This shows the compartmentalized network organization of how an insect learning center (the mushroom body) encodes memory by integrating olfactory stimuli with aversive or attractive teaching signals. Interestingly, the authors found that the 4 main dopaminergic DL1 neurons act redundantly, and that single-cell ablation did not result in aversive memory defects. However, ablation or silencing of a specific DL1 subset (DAN-f1,g1) resulted in reduced salt aversion learning, which was specific to salt but no other aversive teaching stimuli were tested. Importantly, activation of these DANs using an optogenetic approach was also sufficient to induce aversive learning in the presence of high salt. Together with the functional imaging of salt and fructose responses of the individual DANs and the implemented connectome analysis of sensory (and other) inputs to DL1/pPAM DANs, this represents a very comprehensive study linking the structural, functional, and behavioral role of DL1 DANs. This provides fundamental insight into the function of a simple yet efficiently organized learning center which displays highly conserved features of integrating teaching signals with other sensory cues via dopaminergic signaling.

    Strengths:
    This is a very careful, precise, and meticulous study identifying the main larval DANs involved in aversive learning using high salt as a teaching signal. This is highly interesting because it allows us to define the cellular substrates and pathways of aversive learning down to the single-cell level in a system without much redundancy. It therefore sets the basis to conduct even more sophisticated experiments and together with the neat connectome analysis opens the possibility of unraveling different sensory processing pathways within the DL1 cluster and integration with the higher-order circuit elements (Kenyon cells and MBONs). The authors' claims are well substantiated by the data and clearly discussed in the appropriate context. The authors also implement neat pathway analyses using the larval connectome data to its full advantage, thus providing network pathways that contribute towards explaining the obtained results.

    Weaknesses:
    While there is certainly room for further analysis in the future, the study is very complete as it stands. Suggestions for clarification are minor in nature.

  9. Reviewer #3 (Public Review):

    The study of Weber et al. provides a thorough investigation of the roles of four individual dopamine neurons for aversive associative learning in the Drosophila larva. They focus on the neurons of the DL-1 cluster which already have been shown to signal aversive teaching signals. However, the authors go far beyond the previous publications and test whether each of these dopamine neurons responds to salt or sugar, is necessary for learning about salt, bitter, or sugar, and is sufficient to induce a memory when optogenetically activated. In addition, previously published connectomic data is used to analyze the synaptic input to each of these dopamine neurons. The authors conclude that the aversive teaching signal induced by salt is distributed across the four DL-1 dopamine neurons, with two of them, DAN-f1 and DAN-g1, being particularly important. Overall, the experiments are well designed and performed, support the authors' conclusions, and deepen our understanding of the dopaminergic punishment system.

    Strengths:
    1. This study provides, at least to my knowledge, the first in vivo imaging of larval dopamine neurons in response to tastants. Although the selection of tastants is limited, the results close an important gap in our understanding of the function of these neurons.

    2. The authors performed a large number of experiments to probe for the necessity of each individual dopamine neuron, as well as combinations of neurons, for associative learning. This includes two different training regimens (1 or 3 trials), three different tastants (salt, quinine, and fructose) and two different effectors, one ablating the neuron, the other one acutely silencing it. This thorough work is highly commendable, and the results prove that it was worth it. The authors find that only one neuron, DAN-g1, is partially necessary for salt learning when acutely silenced, whereas a combination of two neurons, DAN-f1 and DAN-g1, are necessary for salt learning when either being ablated or silenced.

    3. In addition, the authors probe whether any of the DL-1 neurons is sufficient for inducing an aversive memory. They found this to be the case for three of the neurons, largely confirming previous results obtained by a different learning paradigm, parameters, and effector.

    4. This study also takes into account connectomic data to analyze the sensory input that each of the dopamine neurons receives. This analysis provides a welcome addition to previous studies and helps to gain a more complete understanding. The authors find large differences in inputs that each neuron receives, and little overlap in input that the dopamine neurons of the "aversive" DL-1 cluster and the "appetitive" pPAM cluster seem to receive.

    5. Finally, the authors try to link all the gathered information in order to describe an updated working model of how aversive teaching signals are carried by dopamine neurons to the larva's memory center. This includes important comparisons both between two different aversive stimuli (salt and nociception) and between the larval and adult stages.

    Weaknesses:
    1. The authors repeatedly claim that they found/proved salt-specific memories. I think this is problematic to some extent.

    1a. With respect to the necessity of the DL-1 neurons for aversive memories, the authors' notion of salt-specificity relies on a significant reduction in salt memory after ablating DAN-f1 and g1, and the lack of such a reduction in quinine memory. However, Fig. 5K shows a quite suspicious trend of an impaired quinine memory which might have been significant with a higher sample size. I therefore think it is not fully clear yet whether DAN-f1 and DAN-g1 are really specifically necessary for salt learning, and the conclusions should be phrased carefully.

    1b. With respect to the results of the optogenetic activation of DL-1 neurons, the authors conclude that specific salt memories were established because the aversive memories were observed in the presence of salt. However, this does not prove that the established memory is specific to salt - it could be an unspecific aversive memory that potentially could be observed in the presence of any other aversive stimuli. In the case of DAN-f1, the authors show that the neuron does not even get activated by salt, but is inhibited by sugar. Why should activation of such a neuron establish a specific salt memory? At the current state, the authors clearly showed that optogenetic activation of the neurons does induce aversive memories - the "content" of those memories, however, remains unknown.

    2. In many figures (e.g. figures 4, 5, 6, supplementary figures S2, S3, S5), the same behavioural data of the effector control is plotted in several sub-figures. Were these experiments done in parallel? If not, the data should not be presented together with results not gathered in parallel. If yes, this should be clearly stated in the figure legends.