A role for JAK2 in mediating cell surface GHR-PRLR interaction

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This is an important study that characterizes a surprising interaction between two different cytokine/hormone receptors using nanoscale resolution (dSTORM) microscopy. The study provides solid evidence that the interaction is ligand-dependent, and is mediated by the receptor-associated intracellular signalling molecule JAK2. While at present limited to growth hormone and prolactin receptors in a limited number of cell lines, there are potentially broad implications for cytokine signalling, as such JAK2-mediated interactions could occur between a range of different cytokines. Moreover, the specific hormone interactions shown in the manuscript may have important implications for understanding how these hormones can have differential effects in breast cancer, under different conditions.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Growth hormone (GH) receptor (GHR) and prolactin (PRL) receptor (PRLR) are transmembrane class I cytokine receptors that co-exist in various normal and cancerous cells. Both receptors respond to their associated ligands predominantly by activating the Janus Kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signaling pathways, and both are also known to initiate receptor-specific JAK2-independent signaling. Together with their cognate ligands, these receptors have been associated with pro-tumorigenic effects in various cancers, including breast cancer (BC). Human GH is known to bind GHR and PRLR, while PRL can only bind PRLR. A growing body of work suggests that GHR and PRLR can form heteromers in BC cells, modulating GH signal transduction. However, the dynamics of PRLR and GHR on the plasma membrane and how these could affect their respective signaling still need to be understood.

To this end, we set out to unravel the spatiotemporal dynamics of GHR and PRLR on the surface of human T47D breast cancer cells and γ2A-JAK2 cells. We applied direct stochastic optical reconstruction microscopy (dSTORM) and quantified the colocalization and availability of both receptors on the plasma membrane at the nanometer scale at different time points following treatment with GH and PRL. In cells co-expressing GHR and PRLR, we surprisingly observed that not only GH but also PRL treatment induces a significant loss of surface GHR. In cells lacking PRLR or expressing a mutant PRLR deficient in JAK2 binding, we observed that GH induces downregulation of membrane-bound GHR, but PRL no longer induces loss of surface GHR. Colocalizations of GHR and PRLR were confirmed by proximity ligation (PL) assay.

Our results suggest that PRLR-GHR interaction, direct or indirect, is indispensable for PRL-but not GH-induced loss of surface GHR and for both GH-induced and PRL-induced increase of surface PRLR, with potential consequences for downstream signaling. Furthermore, our results suggest that JAK2 binding via the receptor intracellular domain’s Box1 element is crucial for the observed regulation of one class I cytokine receptor’s cell surface availability via ligand-induced activation of another class I cytokine receptor. Our findings shed new light on the reciprocal and collective role that PRLR and GHR play in regulating cell signaling.

Article activity feed

  1. eLife assessment

    This is an important study that characterizes a surprising interaction between two different cytokine/hormone receptors using nanoscale resolution (dSTORM) microscopy. The study provides solid evidence that the interaction is ligand-dependent, and is mediated by the receptor-associated intracellular signalling molecule JAK2. While at present limited to growth hormone and prolactin receptors in a limited number of cell lines, there are potentially broad implications for cytokine signalling, as such JAK2-mediated interactions could occur between a range of different cytokines. Moreover, the specific hormone interactions shown in the manuscript may have important implications for understanding how these hormones can have differential effects in breast cancer, under different conditions.

  2. Reviewer #1 (Public Review):

    In this study, Chen et al. used super-resolution microscopy on T47D cells to investigate the cell surface distribution of hGHR and hPRLR in steady-state and in response to ligand stimulation. The initial findings of this study suggest both PRL and GH stimulation lead to a decrease in GH receptors but an increase in the PRLR on the cell surface. A subset of both receptors co-localize in close proximity and may form heteromers. Moreover, the study revealed that the box 1 region in GHR plays an essential role in the regulation of its interaction with the PRLR, and the box 1 region in the PRLR is involved in the PRL-induced downregulation of the GHR. The most innovative aspect of this study is the super-resolution microscopy methodology that permits the analysis of proteins on the level of single molecules, and other notable advances are the generation of T47D cells that lack the PRLR and GHR. The questions after reading this manuscript are what novel insights have been gained that significantly go beyond what was already known about the interaction of these receptors and, more importantly, what are the physiological implications of these findings? The proposed significance of the results in the last paragraph of the Discussion section is speculative since none of the receptor interactions have been investigated in TNBC cell lines. Moreover, no physiological experiments were conducted using the PRLR and GH knockout T47D cells to provide biological relevance for the receptor heteromers. The proposed role of JAK2 in the cell surface distribution and association of both receptors as stated in the title was only derived from the analysis of box 1 domain receptor mutants. A knockout of JAK2 was not conducted to assess heteromer formation.

    There are additional points that require the authors' attention:

    1. Except for some investigation of γ2A-JAK2 cells, most of the experiments in this study were conducted on a single breast cancer cell line. In terms of rigor and reproducibility, this is somewhat borderline. The CRISPR/Cas9 mutant T47D cells were not used for rescue experiments with the corresponding full-length receptors and the box1 mutants. A missed opportunity is the lack of an investigation correlating the number of receptors with physiological changes upon ligand stimulation (e.g., cellular clustering, proliferation, downstream signaling strength).

    2. An obvious shortcoming of the study that was not discussed seems to be that the main methodology used in this study (super-resolution microscopy) does not distinguish the presence of various isoforms of the PRLR on the cell surface. Is it possible that the ligand stimulation changes the ratio between different isoforms? Which isoforms besides the long form may be involved in heteromer formation, presumably all that can bind JAK2?

    3. Changes in the ligand-inducible activation of JAK2 and STAT5 were not investigated in the T47D knockout models for the PRL and GHR. It is also a missed opportunity to use super-resolution microscopy as a validation tool for the knockouts on the single cell level and how it might affect the distribution of the corresponding other receptor that is still expressed.

    4. Why does the binding of PRL not cause a similar decrease (internalization and downregulation) of the PRLR, and instead, an increase in cell surface localization? This seems to be contrary to previous observations in MCF-7 cells (J Biol Chem. 2005 October 7; 280(40): 33909-33916).

    5. Some figures and illustrations are of poor quality and were put together without paying attention to detail. For example, in Fig 5A, the GHR was cut off, possibly to omit other nonspecific bands, the WB images look 'washed out'. 5B, 5D: the labels are not in one line over the bars, and what is the point of showing all individual data points when the bar graphs with all annotations and SD lines are disappearing? As done for the y2A cells, the illustrations in 5B-5E should indicate what cell lines were used. No loading controls in Fig 5F, is there any protein in the first lane? No loading controls in Fig 6B and 6H.

    6. The proximity ligation method was not described in the M&M section of the manuscript.

  3. Reviewer #2 (Public Review):

    Summary:
    Chen Chen et al. investigated the interaction between GHR and PRLR at the cell surface using STORM-type super-resolution microscopy, proximity ligation assay, and mutagenesis. They found that GH and PRL change the surface expression of GHR and PRLR. Upon stimulation, the hGHR cluster size significantly increases in a transient manner, whereas changes in hPRLR occur more slowly. In their previous publication, the authors found that hGHR and hPRLR co-immunoprecipitate in the absence of ligands. Based on that finding and the observations here, the authors examined colocalization of hGHR and hPRLR in clusters with proximity ligation assays and found that the receptors form complexes on the surface of T47D cells, and that these complexes respond differently to the ligands. Remarkably, the experiments in cells lacking either hGHR or hPRLR showed that PRLR is necessary for the reduction of surface hGHR induced by PRL. Studies with truncation or deletion of hPRLR mutants, suggest the box 1 region in hPRLR plays a critical role in stabilizing the hGHR-hPRLR complexes. This region contains the JAK2 binding site, and the authors show that binding of JAK2 to hGHR is also required for hPRLR-mediated regulation of hGHR surface expression. Cytokine receptors have very important broad-ranging roles in regulating cells and physiological roles. Therefore, the new findings described here will significantly expand our understanding of the structure-function relationship that drives a core signalling mechanism in cell biology.

    Strengths:
    I particularly appreciate that the authors used different angles to examine the mechanism of GHR-PRLR interaction and that they also checked the conclusions with CRISPR/Cas9 technology and with a cellular reconstitution system.

    Weaknesses:
    I could not fully evaluate some of the data, mainly because several details on acquisition and analysis are lacking. It would be useful to know what the background signal was in dSTORM and how the authors distinguished the specific signal from unspecific background fluorescence, which can be quite prominent in these experiments. Typically, one would evaluate the signal coming from antibodies randomly bound to a substrate around the cells to determine the switching properties of the dyes in their buffer and the average number of localisations representing one antibody. This would help evaluate if GHR or PRLR appeared as monomers or multimers in the plasma membrane before stimulation, which is currently a matter of debate. It would also provide better support for the model proposed in Figure 8. Since many of the findings in this work come from the evaluation of localisation clusters, an image showing actual localisations would help support the main conclusions. I believe that the dSTORM images in Figures 1 and 2 are density maps, although this was not explicitly stated. Alexa 568 and Alexa 647 typically give a very different number of localisations, and this is also dependent on the concentration of BME. Did the authors take that into account when interpreting the results and creating the model in Figures 2 and 8? I believe that including this information is important as findings in this paper heavily rely on the number of localisations detected under different conditions. Including information on proximity labelling and CRISPR/Cas9 in the methods section would help with the reproducibility of these findings by other groups.

  4. Reviewer #3 (Public Review):

    Summary:
    The authors are interested in the relative importance of PRL versus GH and their interactive signaling in breast cancer. After examining GHR-PRLR interactions in response to ligands, they suggest that a reduction in cell surface GHR in response to PRL may be a mechanism whereby PRL can sometimes be protective against breast cancer.

    Strengths:
    The strengths of the study include the interesting question being addressed and the application of multiple complementary techniques, including dSTORM, which is technically very challenging, especially when using double labeling. Thus, dSTORM is used to show co-clustering of GHR and PRLR, and, in response to PRL, rapid internalization of GHR and increased cell surface PRLR. Proximity ligation assays demonstrate that some GHR and PRLR are within 40 nm (≈ 4 plasma membranes) of each other and that upon ligand stimulation, they move apart. Intact receptor knockin and knockout approaches and receptor constructs without the Jak2 binding domain demonstrate a) a requirement for the PRLR for there to be PRL-driven internalization of GHR, and b) that Jak2-PRLR interactions are necessary for the stability of the GHR-PRLR colocalizations.

    Weaknesses:
    The manuscript suffers from a lack of detail, which in places makes it difficult to evaluate the data and would make it very difficult for the results to be replicated by others. In addition, the manuscript would very much benefit from a full discussion of the limitations of the study. For example, the manuscript is written as if there is only one form of the PRLR while the anti-PRLR antibody used for dSTORM would also recognize the intermediate form and short forms 1a and 1b on the T47D cells. Given the very different roles of these other PRLR forms in breast cancer (Dufau, Vonderhaar, Clevenger, Walker and other labs), this limitation should at the very least be discussed. Similarly, the manuscript is written as if Jak2 essentially only signals through STAT5 but Jak2 is involved in multiple other signaling pathways from the multiple PRLRs, including the long form. Also, while there are papers suggesting that PRL can be protective in breast cancer, the majority of publications in this area find that PRL promotes breast cancer. How then would the authors interpret the effect of PRL on GHR in light of all those non-protective results?