Characterisation of an Escherichia coli line that completely lacks ribonucleotide reduction yields insights into the evolution of parasitism and endosymbiosis

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    Nearly all organisms require a ribonucleotide reductase (RNR) to convert ribonucleotides to their deoxyribonucleotide counterparts. In this important study, the reader learns how the model organism Escherichia coli can adapt to survive without any of its three RNRs. Compelling microbiology experiments to develop this model and analysis of compensatory mutations reveals patterns that are conserved in the few known pathogens that have also eliminated their dependence on an RNR. The manuscript will be of interest to microbiologists, biochemists, and those who work on the evolution of microbial metabolism.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. As ribonucleotide reduction has on occasion been lost in parasites and endosymbionts, which are instead dependent on their host for deoxyribonucleotide synthesis, it should in principle be possible to knock this process out if growth media are supplemented with deoxyribonucleosides. We report the creation of a strain of Escherichia coli where all three ribonucleotide reductase operons have been deleted following introduction of a broad spectrum deoxyribonucleoside kinase from Mycoplasma mycoides. Our strain shows slowed but substantial growth in the presence of deoxyribonucleosides. Under limiting deoxyribonucleoside levels, we observe a distinctive filamentous cell morphology, where cells grow but do not appear to divide regularly. Finally, we examined whether our lines can adapt to limited supplies of deoxyribonucleosides, as might occur in the switch from de novo synthesis to dependence on host production during the evolution of parasitism or endosymbiosis. Over the course of an evolution experiment, we observe a 25-fold reduction in the minimum concentration of exogenous deoxyribonucleosides necessary for growth. Genome analysis reveals that several replicate lines carry mutations in deoB and cdd . deoB codes for phosphopentomutase, a key part of the deoxyriboaldolase pathway, which has been hypothesised as an alternative to ribonucleotide reduction for deoxyribonucleotide synthesis. Rather than complementing the loss of ribonucleotide reduction, our experiments reveal that mutations appear that reduce or eliminate the capacity for this pathway to catabolise deoxyribonucleotides, thus preventing their loss via central metabolism. Mutational inactivation of both deoB and cdd is also observed in a number of obligate intracellular bacteria that have lost ribonucleotide reduction. We conclude that our experiments recapitulate key evolutionary steps in the adaptation to life without ribonucleotide reduction.

Article activity feed

  1. Author Response

    Reviewer #1 (Public Review):

    This manuscript describes efforts to understand how independence from ribonucleotide reduction might evolve in obligate intracellular bacterial pathogens using E. coli as a model for this process. The authors successfully deleted the three ribonucleotide reductase (RNR) operons present in E. coli and showed that growth of this knockout strain can be achieved with deoxyribonucleotide supplementation. They also performed evolutionary experiments and analysis of cell growth and morphology under conditions of low nucleotide availability. In this work, they established that certain genes are consistently mutated to compensate for the loss of RNR activity and the low availability of deoxynucleotides. Comparison to genomes of intracellular pathogens that lack RNR genes shows that these patterns are largely conserved.

    While the experimental results support the conclusions of the study, the authors do report changes in cell morphology upon the growth of the RNR knockout strains with low concentrations of nucleotides. It would be ideal to note this complication earlier in the manuscript. And to clarify how the possibility of cell elongation might affect the OD measurements in Figure 3 describing the experiments to establish that dC is necessary for growth in the knockout strain. It would also be ideal to provide a more detailed explanation for that observation in the discussion.

    Thank you for the feedback. We have now added mention of cell morphology in the final paragraph of the introduction, where we summarise key findings.

    For establishing if there is either growth or no growth under various conditions, as we have done, a qualitative assessment such as the one presented in Figure 3 is sufficient. The issue of whether OD is impacted by cell elongation has been documented by Stevenson et al. (https://www.nature.com/articles/srep38828), and becomes a problem if trying to quantify parameters such as doubling time or when trying to estimate cell counts. We do not do either of these, as calculation of both requires an assumption of normal cell morphology in E. coli. We have added a note to clarify this in the first paragraph of the Discussion section, as per the suggestion from Reviewer #1.

    Reviewer #2 (Public Review):

    Ribonucleotide reductase (RNR) is crucial for de novo synthesis of the dNTP building blocks needed for DNA synthesis and is essential in nearly all organisms. In the current study, all three E. coli RNRs have been removed and the essential function of the enzyme is bypassed by the introduction of an exogenous deoxyribonucleoside kinase that enables dNTP production via salvage synthesis. This leads to a complete dependency on exogenously supplied deoxyribonucleosides (dNs), loss of control of dNTP regulation, and a highly increased mutation rate. The bacteria could also grow with only supplied deoxycytidine (and no other dNs), indicating that all dNTPs could be synthesized from deoxycytidine. An evolutionary analysis of the recombinant E. coli strain grown in multiple generations showed that mutations accumulated in genes involved in the catabolism of deoxycytidine and deoxyribose-1-P, supporting a model that all the other deoxyribonucleosides can be produced by a phosphorylase using nucleobases and deoxyribose-1-P as substrates and that the deoxycytidine (besides being a precursor of dCTP) could be a substrate to produce the deoxyribose-1-P needed by the phosphorylase working in the opposite direction.

    The story is very interesting with novel findings, and the experiments are well performed. There are a few missing pieces of information, but on the other hand, it is many steps to cover if everything is going to be shown in a single paper and I came to the conclusion that the data is enough at this stage. One of the missing points for future research is to check what happens with the dNTP pools. RNR is a very important enzyme to control the dNTP levels and it is likely that it is unbalanced dNTP pools that lead to the increased mutation rates. However, it would be interesting to really measure the dNTP pools and connect them to the mutations reported. Another missing piece is to identify which nucleoside phosphorylase is involved and investigate its substrate specificity to better understand why the cells can live on deoxycytidine but not other dNs.

    We thank the reviewer for these comments. It is certainly possible that the mutational biases we observe across the genomes of our evolved lines are related to skewed pools. We hope to examine this in a follow-up study. Likewise, it will be interesting to investigate the biochemical basis for our lines being able to grow solely on deoxycytidine, and to ascertain how this might also impact mutation.

    Reviewer #3 (Public Review):

    The study focuses on a compelling question focusing on a largely indispensable mechanism, ribonucleotide reduction. The authors generate a unique specific bacterial strain where the ribonucleotide reducatase operon, entirely, is deleted. They grow the mutant strain in environments that have various amounts of the necessary deoxyribonucleoside levels, further, they perform evolution experiments to see whether and how the evolved lines would be able to adapt to the limited deoxyribonucleosides. Finally, researchers identify key mutations and generate key isogenic genetic constructs where target mutants are deleted. A summary postulation based on the evolutionary trajectory of ribonucleotide reduction by bacteria is presented. Overall, the study is well presented, well-justified, and builds on fairly classic genetic and evolution experiments. The select question and hypotheses and the overall framing of the story are fairly novel for the respective communities. The results should be interesting to evolutionary biology researchers, especially those interested in RNA>DNA directional evolution, as well as molecular microbiologists interested in the ribonucleotide reception dependence and selection by the environment. A discussion on the limitations of the laboratory study for the broader understanding of the host dependence during endosymbiosis and parasitism would be a good addition given the emphasis on this phenomenon as a part of the broader impacts of the study.

    We thank the reviewer for suggestion that we consider the broader implications of our work. We have now added a final paragraph which addresses the question of why loss of ribonucleotide reduction appears so rare.

  2. eLife assessment

    Nearly all organisms require a ribonucleotide reductase (RNR) to convert ribonucleotides to their deoxyribonucleotide counterparts. In this important study, the reader learns how the model organism Escherichia coli can adapt to survive without any of its three RNRs. Compelling microbiology experiments to develop this model and analysis of compensatory mutations reveals patterns that are conserved in the few known pathogens that have also eliminated their dependence on an RNR. The manuscript will be of interest to microbiologists, biochemists, and those who work on the evolution of microbial metabolism.

  3. Reviewer #1 (Public Review):

    This manuscript describes efforts to understand how independence from ribonucleotide reduction might evolve in obligate intracellular bacterial pathogens using E. coli as a model for this process. The authors successfully deleted the three ribonucleotide reductase (RNR) operons present in E. coli and showed that growth of this knockout strain can be achieved with deoxyribonucleotide supplementation. They also performed evolutionary experiments and analysis of cell growth and morphology under conditions of low nucleotide availability. In this work, they established that certain genes are consistently mutated to compensate for the loss of RNR activity and the low availability of deoxynucleotides. Comparison to genomes of intracellular pathogens that lack RNR genes shows that these patterns are largely conserved.

    While the experimental results support the conclusions of the study, the authors do report changes in cell morphology upon the growth of the RNR knockout strains with low concentrations of nucleotides. It would be ideal to note this complication earlier in the manuscript. And to clarify how the possibility of cell elongation might affect the OD measurements in Figure 3 describing the experiments to establish that dC is necessary for growth in the knockout strain. It would also be ideal to provide a more detailed explanation for that observation in the discussion.

  4. Reviewer #2 (Public Review):

    Ribonucleotide reductase (RNR) is crucial for de novo synthesis of the dNTP building blocks needed for DNA synthesis and is essential in nearly all organisms. In the current study, all three E. coli RNRs have been removed and the essential function of the enzyme is bypassed by the introduction of an exogenous deoxyribonucleoside kinase that enables dNTP production via salvage synthesis. This leads to a complete dependency on exogenously supplied deoxyribonucleosides (dNs), loss of control of dNTP regulation, and a highly increased mutation rate. The bacteria could also grow with only supplied deoxycytidine (and no other dNs), indicating that all dNTPs could be synthesized from deoxycytidine. An evolutionary analysis of the recombinant E. coli strain grown in multiple generations showed that mutations accumulated in genes involved in the catabolism of deoxycytidine and deoxyribose-1-P, supporting a model that all the other deoxyribonucleosides can be produced by a phosphorylase using nucleobases and deoxyribose-1-P as substrates and that the deoxycytidine (besides being a precursor of dCTP) could be a substrate to produce the deoxyribose-1-P needed by the phosphorylase working in the opposite direction.

    The story is very interesting with novel findings, and the experiments are well performed. There are a few missing pieces of information, but on the other hand, it is many steps to cover if everything is going to be shown in a single paper and I came to the conclusion that the data is enough at this stage. One of the missing points for future research is to check what happens with the dNTP pools. RNR is a very important enzyme to control the dNTP levels and it is likely that it is unbalanced dNTP pools that lead to the increased mutation rates. However, it would be interesting to really measure the dNTP pools and connect them to the mutations reported. Another missing piece is to identify which nucleoside phosphorylase is involved and investigate its substrate specificity to better understand why the cells can live on deoxycytidine but not other dNs.

  5. Reviewer #3 (Public Review):

    The study focuses on a compelling question focusing on a largely indispensable mechanism, ribonucleotide reduction. The authors generate a unique specific bacterial strain where the ribonucleotide reducatase operon, entirely, is deleted. They grow the mutant strain in environments that have various amounts of the necessary deoxyribonucleoside levels, further, they perform evolution experiments to see whether and how the evolved lines would be able to adapt to the limited deoxyribonucleosides. Finally, researchers identify key mutations and generate key isogenic genetic constructs where target mutants are deleted. A summary postulation based on the evolutionary trajectory of ribonucleotide reduction by bacteria is presented. Overall, the study is well presented, well-justified, and builds on fairly classic genetic and evolution experiments. The select question and hypotheses and the overall framing of the story are fairly novel for the respective communities. The results should be interesting to evolutionary biology researchers, especially those interested in RNA>DNA directional evolution, as well as molecular microbiologists interested in the ribonucleotide reception dependence and selection by the environment. A discussion on the limitations of the laboratory study for the broader understanding of the host dependence during endosymbiosis and parasitism would be a good addition given the emphasis on this phenomenon as a part of the broader impacts of the study.