Structure of human phagocyte NADPH oxidase in the resting state

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    NOX2 is the most well-studied member of the NADPH oxidase family, membrane enzymes that produce reactive oxygen species (ROS), and the proper function of NOX2 is critical for innate immunity against pathogens in mammals. This study reports a high-resolution structure of the NOX2-p22 complex, providing valuable information for a mechanistic understanding of NOX2 activation at the molecular level.

This article has been Reviewed by the following groups

Read the full article See related articles


Phagocyte oxidase plays an essential role in the first line of host defense against pathogens. It oxidizes intracellular NADPH to reduce extracellular oxygen to produce superoxide anions that participate in pathogen killing. The resting phagocyte oxidase is a heterodimeric complex formed by two transmembrane proteins NOX2 and p22. Despite the physiological importance of this complex, its structure remains elusive. Here, we reported the cryo-EM structure of the functional human NOX2-p22 complex in nanodisc in the resting state. NOX2 shows a canonical 6-TM architecture of NOX and p22 has four transmembrane helices. M3, M4, and M5 of NOX2, and M1 and M4 helices of p22 are involved in the heterodimer formation. Dehydrogenase (DH) domain of NOX2 in the resting state is not optimally docked onto the transmembrane domain, leading to inefficient electron transfer and NADPH binding. Structural analysis suggests that the cytosolic factors might activate the NOX2-p22 complex by stabilizing the DH in a productive docked conformation.

Article activity feed

  1. eLife assessment

    NOX2 is the most well-studied member of the NADPH oxidase family, membrane enzymes that produce reactive oxygen species (ROS), and the proper function of NOX2 is critical for innate immunity against pathogens in mammals. This study reports a high-resolution structure of the NOX2-p22 complex, providing valuable information for a mechanistic understanding of NOX2 activation at the molecular level.

  2. Reviewer #1 (Public Review):

    NADPH oxidases are a family of membrane enzymes that produce reactive oxygen species (ROS). NOX2 is the most well-studied member of the NADPH oxidase family, and the proper function of NOX2 is critical for innate immunity against pathogens in mammals.

    The study by Dr. Chen and colleagues used antibodies to facilitate the structural determination of the high-resolution structure of the NOX2-p22 complex, which is otherwise challenging for single-particle analysis due to its flexibility and relatively small molecular weight. The work uncovered the high-resolution information between NOX2-p22 interaction and conformational flexibility between the DH domain and the transmembrane domain of NOX2. This structural study provides valuable information for a mechanistic understanding of NOX2 activation at the molecular level.

    The weakness of the paper is the lack of in-depth analyses regarding structural discoveries. In addition, a study by Noreng S et al on the structure of the NOX2-p22 complex is now available.

  3. Reviewer #2 (Public Review):

    The structure was solved in its resting (i.e. non-activated) form and was stabilized by adding an antibody that recognizes an extracellular epitope. The protein - the complex of NOX2-p22 bound to the antibody- was reconstituted from proteins expressed in human cells through baculovirus transduction. The cryoEM gridswere obtained by using nanodisc-embedded complexes. The structure clarifies the topology of the p22 subunit, showing that it comprises four transmembrane helices. Moreover, it confirms that the oxygen-reacting center is conserved among NOXs implying a similar mechanism for ROS generation. Furthermore, the 3D structure explains the effect of the many known disease-causing mutations. They mostly affect the active sites or the NOX2-p22 subunit-subunit interface. The cytosolic dehydrogenase domain is not as ordered in the cryoEM maps. Clearly, NOX2 is a highly dynamic protein where the cytosolic and membrane domains can enjoy considerable flexibility. This feature very likely underpins the mechanism of activation, which is triggered by the cytosolic subunits and remains to be understood. The manuscript suggests that the cytosolic subunits might stabilize the enzyme in the conformation that is capable of conducting electrons from the NADP-flavin site to the inner heme, thereby enabling catalysis.

    Overall, this is great experimental work: the structure of NOX2 has been awaited for a long time. The data reported in this manuscript should probably be seen as the beginning of the NOX2 structural era. Indeed, a lot remains to be clarified, especially with regard to NADPH binding and the mechanism of enzyme activation. Along this line, the manuscript reads more as a preliminary report rather than a full-story manuscript. Beside this general concern, I do not have any specific comment about the presentation style: the manuscript is clearly written and nicely illustrated.

  4. Reviewer #3 (Public Review):

    This manuscript will be of interest primarily to researchers in the field of NADPH oxidases (NOXs) but also to those interested in the wider ferric reductase superfamily, also comprising members of the six-transmembrane epithelial antigen of the prostate enzymes (STEAPs). More limited interest may be expressed by investigators of ferredoxin - NADP reductases, resembling the dehydrogenase region (DH) of NOXs, expressing lesser "visibility" in the structure described in the paper. Considering the fact that NOXs are essentially electron transport machines from NADPH to dioxygen, along a multi-step redox cascade, those interested in hydride and electron transfer, at a more conceptual level, might also want to have a look at the paper. Elucidating structures of NOXs are still rare achievements, with only four published papers, so far (one coming from the group of the present main author) and, thus, any new publication profits from the aura of novelty.

    This manuscript offers a detailed and in depth description of the structure of the catalytic core of the human phagocyte NADPH oxidase, NOX2, in heterodimeric association with the protein p22phox. The phagocyte NADPH oxidase is responsible for the production of reactive oxygen species (ROS), the primary molecule of which is the superoxide radical (O2.-), derived by the one-electron reduction of molecular oxygen by NADPH. NOX2 belongs to the NOX family, consisting of 7 members (NOX 1-5, and DUOX1 and DUOX2), sharing common structural characteristics but expressing a wide variety of functions. The principal but not the only function of NOX2 is as a source of ROS for the killing of pathogenic microorganisms (bacteria, fungi, protozoa) engulfed by phagocytes in the course of innate and acquired immunity.

    The structures of C. stagnale NOX5, and that of murine and human DUOX1 were determined by X-ray crystallography (NOX5) and cryo-EM (DUOX1). As sources of potentially dangerous auto-toxic ROS, NOXs are subject to strict functional regulation. Whereas Nox5 and the DUOXs are regulated by Ca2+, NOXs 1, 2, and 3 are regulated by several cytosolic proteins, that associate with the Nox2-p22phox dimer forming the active O2.-generating complex. The paramount model of cytosolic regulation is Nox2 and the "dream" of structure investigators is to elucidate the structure of NOX2 in both resting and activated states.

    Note: When this paper was received for review, this reviewer was not aware of any publication dealing with the structure of human Nox2. However, on October 14, 2022 a paper was published on line, dealing with the structure of Nox2 (S. Noreng et al., Structure of the core human NADPH oxidase Nox2, Nature Communications (2022)13:6079). This review will not discuss the present manuscript in relation to the paper by S. Noreng et al.

    This manuscript is successful in describing the structure of the NOX2-p22phox heterodimer using cryo-EM methodology. In order to compensate for the small size of the complex, use was made of the Fab of a monoclonal anti-Nox2 antibody binding an anti-light chain tagged nanobody. In order to mimic as much as possible the milieu of NOX2-p22phox in the phagocyte membrane bilayer, the authors reconstitute the quaternary complex in a nanodisc, using soybean phosphatidylcholine (PC) and a membrane scaffold protein (MSP). To the best of my knowledge, this is the first report of studying a NOX in a nanodisc, for both function and structure. Peptidiscs were used in determining the structure of human DUOX1 by a group led by the main author of this paper, but nanodiscs offer the advantage of adding a phospholipid chosen by the investigator. The purified nanodiscs incorporating the quaternary complex led to successful structure determination of the transmembrane domain (TMD), extracellular and intracellular loops, inner and outer hemes, distances between hemes and FAD to inner heme, and a hydrophilic tunnel connecting the exterior of the cell to the oxygen-reducing center of NOX2. The structure of the dehydrogenase region (DH) was less well defined; the FAD-binding domain (FBD) was more visible than the NADPH-binding domain (NBD). The structure of p22phox and the interface between Nox2 and p22phox are well described.

    The mutations in NOX2 and p22phox causative of the deficient bactericidal function in Chronic Granulomatous Disease are related in detail to the location and role of the mutated residues as revealed by the solved structure.
    The authors make it clear that the structure, as presented, is in the resting state. The distances between hemes are suitable for electron transfer but the distance between FAD, in the FBD, and the inner heme is too large for transfer. The poor quality of the obtained structure of the DH (especially, the NBD), even after local refinement focusing, suggests its flexibility (mobility?) relative to the TMD and that, in NOX2, the DH is "displaced" relative to the TMD, when compared to the situation in the activated (by Ca2+) DUOX1. The mobility of NBD in NOX2 also results in weak interaction with FBD, making hydride transfer from NADPH to FAD inefficient

    A major achievement of the work described in this manuscript is what I believe to be the first description of the activation of recombinant NOX2-p22phox in a nanodisc, to generate O2.-, when activated by a trimeric fusion protein (trimera), consisting of the functionally important parts of the three cytosolic components, p47phox, p67phox, and Rac (see Y. Berdichevsky et al., J. Biol. Chem. 282, 22122-22139, 2007). This proves that the resting state structure of NOX2-p22phox has all that is needed to be converted to the activated state. The fact that the nature of the phospholipid in the nanodisc can be varied and that this is known to have a major effect on the affinity of the trimera for NOX2-p22phox, offers additional advantages.

    A weakness of this, otherwise impressive work, is the difficulty for readers who are not sufficiently "structure educated" to fully understand the "displacement" of the DH of NOX2, shown in the NOX2/DUOX1 overlay (Figure 5). The meaning of "centers of mass" of FBD and FAD, in Figures 5C and 5D, respectively, is not properly explained.

    Yet another weakness is the much too vague wording of the change in NOX2 conformation from the resting to the activated state by cytosolic factors as "the cytosolic factors might likely stabilize the DH of NOX2 in the "docked" conformation which is similar to that observed in the activated DUOX1 in the high-calcium state". First, the evidence from biochemical studies of NOX2 activation indicates clearly distinct targets of individual cytosolic components and not a "block" action. There is also support for the conformational change being the result of the action of a single cytosolic component (p67phox), with the other cytosolic components acting as carriers or activators of one cytosolic component by another, such as Rac-GTP acting as a carrier and inducer of a conformational change in p67phox (see J. El-Benna and P.M-C. Dang, J. Leukoc. Biol. 110, 213-215, 2021, and E. Bechor et al., J. Leukoc. Biol. 110, 219-237, 2021). Also, the concept of "docking of the DH to the TMD" seems like an oversimplification of the many locations and partners of such "docking" and ignores the possible multiple consequence of such docking. Even before the appearance of structural studies of NOXs, revealing precise distances between redox stations (NADPH-FAD; FAD-inner heme; inner heme - outer heme), as first reported for C. stagnale Nox5, by F. Magnani et al., Proc. Natl. Acad. Sci. U.S.A. 114, 6764-6769, 2017, a shortening of the distance between an electron donor and acceptor at specific locations in the redox cascade was proposed. The most popular was the NADPH - FAD hydride transfer, based on structural work by P.A. Karplus on Ferredoxin - NADP reductases, the accepted model for the DH of NOXs.

    An unfair request for an unachieved task
    Of course, the dream of those hoping for a structure-based response to solving the molecular mechanism of NOX activation is to see the structure of the activated NOX2 in complex with three cytosolic components. The compelling finding in the present manuscript that a nanodisc-embedded recombinant NOX2-p22phox can be activated to ROS production by the use of a [p47phox-p67phox-Rac] trimera (replacing three cytosolic components) will provoke in all the readers the wish to see the structure of such a complex. The size of the trimera with a GFP tag (108 kDa) might make the use of the anti-Nox2 Fab and anti-light chain nanobody, unnecessary. Prenylation of the trimera at the Rac moiety is bound to markedly enhance its affinity for the phospholipids in the nanodisc and is likely to generate a more stable complex, most suitable for cryo-EM (see A. Mizrahi et al., J. Biol. Chem. 285, 25485-25499, 2010).