Regulatory and coding sequences of TRNP1 co-evolve with brain size and cortical folding in mammals

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This is an important paper that combines comparative analysis and experimental assays to investigate the role of protein-coding and regulatory changes at TRNP1 in mammalian brain evolution. The evidence supporting a contribution of TRNP1 is convincing, although the link between protein-coding changes and trait evolution is stronger and more readily interpretable than the data on gene regulation. The work will be of interest to researchers in the areas of mammalian evolution, brain evolution, and evolutionary genetics.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Brain size and cortical folding have increased and decreased recurrently during mammalian evolution. Identifying genetic elements whose sequence or functional properties co-evolve with these traits can provide unique information on evolutionary and developmental mechanisms. A good candidate for such a comparative approach is TRNP1 , as it controls proliferation of neural progenitors in mice and ferrets. Here, we investigate the contribution of both regulatory and coding sequences of TRNP1 to brain size and cortical folding in over 30 mammals. We find that the rate of TRNP1 protein evolution ( ω ) significantly correlates with brain size, slightly less with cortical folding and much less with body size. This brain correlation is stronger than for >95% of random control proteins. This co-evolution is likely affecting TRNP1 activity, as we find that TRNP1 from species with larger brains and more cortical folding induce higher proliferation rates in neural stem cells. Furthermore, we compare the activity of putative cis-regulatory elements (CREs) of TRNP1 in a massively parallel reporter assay and identify one CRE that likely co-evolves with cortical folding in Old World monkeys and apes. Our analyses indicate that coding and regulatory changes that increased TRNP1 activity were positively selected either as a cause or a consequence of increases in brain size and cortical folding. They also provide an example how phylogenetic approaches can inform biological mechanisms, especially when combined with molecular phenotypes across several species.

Article activity feed

  1. Author Response

    Reviewer #1 (Public Review):

    Because of the importance of brain and cognitive traits in human evolution, brain morphology and neural phenotypes have been the subject of considerable attention. However, work on the molecular basis of brain evolution has tended to focus on only a handful of species (i.e., human, chimp, rhesus macaque, mouse), whereas work that adopts a phylogenetic comparative approach (e.g., to identify the ecological correlates of brain evolution) has not been concerned with molecular mechanism. In this study, Kliesmete, Wange, and colleagues attempt to bridge this gap by studying protein and cis-regulatory element evolution for the gene TRNP1, across up to 45 mammals. They provide evidence that TRNP1 protein evolution rates and its ability to drive neural stem cell proliferation are correlated with brain size and/or cortical folding in mammals, and that activity of one TRNP1 cis-regulatory element may also predict cortical folding.

    There is a lot to like about this manuscript. Its broad evolutionary scope represents an important advance over the narrower comparisons that dominate the literature on the genetics of primate brain evolution. The integration of molecular evolution with experimental tests for function is also a strength. For example, showing that TRNP1 from five different mammals drives differences in neural stem cell proliferation, which in turn correlate with brain size and cortical folding, is a very nice result. At the same time, the paper is a good reminder of the difficulty of conclusively linking macroevolutionary patterns of trait evolution to molecular function. While TRNP1 is a moderate outlier in the correlation between rate of protein evolution and brain morphology compared to 125 other genes, this result is likely sensitive to how the comparison set is chosen; additionally, it's not clear that a correlation with evolutionary rate is what should be expected. Further, while the authors show that changes in TRNP1 sequence have functional consequences, they cannot show that these changes are directly responsible for size or folding differences, or that positive selection on TRNP1 is because of selection on brain morphology (high bars to clear). Nevertheless, their findings contribute strong evidence that TRNP1 is an interesting candidate gene for studying brain evolution. They also provide a model for how functional follow-up can enrich sequence-based comparative analysis.

    We thank the reviewer for the positive assessment. With respect to our set of control genes and the interpretation of the correlation between the evolution of the TRNP1 protein sequence and the evolution of brain size and gyrification, we would like to mention the following: we do think that the set is small, but we took all similarly sized genes with one coding exon that we could find in all 30 species. Furthermore, the control genes are well comparable to TRNP1 with respect to alignment quality and average omega (Figure 1-figure supplement 3). Hence, we think that the selection procedure and the actual omega distribution make them a valid, unbiased set to which TRNP1’s co-evolution with brain phenotypes can be compared to. Moreover, we want to point out that by using Coevol, we correlate evolutionary rates, that is the rate of protein evolution of TRNP1 as measured with omega and the rate of brain size evolution that is modeled in Coevol as a Brownian motion process. We think that this was unclear in the previous version of our manuscript, and appreciate that the reviewer saw some merit in our analyses in spite of it.

    Finding conclusive evidence to link molecular evolution to concrete phenotypes is indeed difficult and necessarily inferential. This said, we still believe that correlating rates of evolution of phenotype and sequence across a phylogeny is one of the most convincing pieces of evidence available.

    Reviewer #2 (Public Review):

    In this paper, Kliesmete et al. analyze the protein and regulatory evolution of TRNP1, linking it to the evolution of brain size in mammals. We feel that this is very interesting and the conclusions are generally supported, with one concern.

    The comparison of dN/dS (omega) values to 125 control proteins is helpful, but an important factor was not controlled. The fraction of a protein in an intrinsically disordered region (IDR) is potentially even more important in affecting dN/dS than the protein length or number of exons. We suggest comparing dN/dS of TRNP1 to another control set, preferably at least ~500 proteins, which have similar % IDR.

    Thank you for this interesting suggestion. As mentioned in the public response to Reviewer #1, we are sorry that we did not explain the rationale of the approach very well in the previous version of the manuscript. As also argued above, we think that our control proteins are an unbiased set as they have a comparable alignment quality and an average omega (dN/dS) similar to TRNP1 (Figure 1-figure supplement 3). While IDR domains tend to have a higher omega than their respective non-IDR counterparts, we do not think that the IDR content should be more relevant than omega itself as we do not interpret this estimate on its own, but its covariance with the rate of phenotypic change. Indeed, the proteins of our control set that have a higher IDR content (D2P2, Oates et al. 2013) do not show stronger evidence to be coevolving with the brain phenotypes (IDR content vs. absolute brain size-omega partial correlation: Kendall's tau = 0.048, p-value = 0.45; IDR content vs. absolute GI-omega partial correlation: Kendall’s tau = -0.025, p-value = 0.68; 88 proteins (71%) contain >0% IDRs; 8 proteins contain >62% (TRNP1 content) IDRs.

    Reviewer #3 (Public Review):

    In this work, Z. Kliesmete, L. Wange and colleagues investigate TRNP1 as a gene of potential interest for the evolution of the mammalian cortex. Previous evidence suggests that TRNP1 is involved in self-renewal, proliferation and expansion in cortical cells in mouse and ferret, making this gene a good candidate for evolutionary investigation. The authors designed an experimental scheme to test two non-exclusive hypotheses: first, that evolution of the TRNP1 protein is involved in the apparition of larger and more convoluted brains; and second, that regulation of the TRNP1 gene also plays a role in this process alongside protein evolution.

    The authors report that the rate of TRNP1 protein evolution is strongly correlated to brain size and gyrification, with species with larger and more convoluted brains having more divergent sequences at this gene locus. The correlation with body mass was not as strong, suggesting a functional link between TRNP1 and brain evolution. The authors directly tested the effects of sequence changes by transfecting the TRNP1 sequences from 5 different species in mouse neural stem cells and quantifying cell proliferation. They show that both human and dolphin sequences induce higher proliferation, consistent with larger brain sizes and gyrifications in these two species. Then, the authors identified six potential cis-regulatory elements around the TRNP1 gene that are active in human fetal brain, and that may be involved in its regulation. To investigate whether sequence evolution at these sites results in changes in TRNP1 expression, the authors performed a massively parallel reporter assay using sequences from 75 mammals at these six loci. The authors report that one of the cis-regulatory elements drives reporter expression levels that are somewhat correlated to gyrification in catarrhine monkeys. Consistent with the activity of this cis-regulatory sequence in the fetal brain, the authors report that this element contains binding sites for TFs active in brain development, and contains stronger binding sites for CTCF in catarrhine monkeys than in other species. However, the specificity or functional relevance of this signal is unclear.

    Altogether, this is an interesting study that combines evolutionary analysis and molecular validation in cell cultures using a variety of well-designed assays. The main conclusions - that TRNP1 is likely involved in brain evolution in mammals - are mostly well supported, although the involvement of gene regulation in this process remains inconclusive.

    Strengths:

    • The authors have done a good deal of resequencing and data polishing to ensure that they obtained high-quality sequences for the TRNP1 gene in each species, which enabled a higher confidence investigation of this locus.
    • The statistical design is generally well done and appears robust.
    • The combination of evolutionary analysis and in vivo validation in neural precursor cells is interesting and powerful, and goes beyond the majority of studies in the field. I also appreciated that the authors investigated both protein and regulatory evolution at this locus in significant detail, including performing a MPRA assay across species, which is an interesting strategy in this context.

    Weaknesses:

    • The authors report that TRNP1 evolves under positive selection, however this seems to be the case for many of the control proteins as well, which suggests that the signal is non-specific and possibly due to misspecifications in the model.
    • The evidence for a higher regulatory activity of the intronic cis-regulatory element highlighted by the authors is fairly weak: correlation across species is only 0.07, consistent with the rapid evolution of enhancers in mammals, and the correlation in catarrhine monkeys is seems driven by a couple of outlier datapoints across the 10 species. It is unclear whether false discovery rates were controlled for in this analysis.
    • The analysis of the regulatory content in this putative enhancer provides some tangential evidence but no reliable conclusions regarding the involvement of regulatory changes at this locus in brain evolution.

    We thank the reviewer for the detailed comments. Indeed, TRNP1 overall has a rather average omega value across the tree and hence also the proportion of sites under selection is not hugely increased compared to the control proteins. This is good because we want to have comparable power to detect a correlation between the rate of protein evolution (omega) and the rate of brain size or GI evolution for TRNP1 and the control proteins. Indeed, what makes TRNP1 special is the rather strong correlation between the rate of brain size change and omega, which was only stronger in 4% of our control proteins. Hence, we do not agree with the weakness of model misspecification for TRNP1 protein evolution.

    We agree that the correlation of the activity induced by the intronic cis regulatory element (CRE) with gyrification is weak, but we dispute that the correlation is due to outliers (see residual plot below) or violations of model assumptions (see new permutation analysis in the Results section). There are many reasons why we would expect such a correlation not to be weak, including that a MPRA takes the CRE out of its natural genomic context. Our conclusions do not solely rest on those statistics, but also on independent corroborating evidence: Reilly et al (2015) found a difference in the activity of the TRNP1 intron between human and macaque samples during brain development. Furthermore, we used their and other public data to show that the intron CRE is indeed active in humans and bound by CTCF (new Figure 4 - figure supplement 2).

    We believe that the combined evidence suggests a likely role for the intron CRE for the co-evolution of TRNP1 with gyrification.

  2. eLife assessment

    This is an important paper that combines comparative analysis and experimental assays to investigate the role of protein-coding and regulatory changes at TRNP1 in mammalian brain evolution. The evidence supporting a contribution of TRNP1 is convincing, although the link between protein-coding changes and trait evolution is stronger and more readily interpretable than the data on gene regulation. The work will be of interest to researchers in the areas of mammalian evolution, brain evolution, and evolutionary genetics.

  3. Reviewer #1 (Public Review):

    Because of the importance of brain and cognitive traits in human evolution, brain morphology and neural phenotypes have been the subject of considerable attention. However, work on the molecular basis of brain evolution has tended to focus on only a handful of species (i.e., human, chimp, rhesus macaque, mouse), whereas work that adopts a phylogenetic comparative approach (e.g., to identify the ecological correlates of brain evolution) has not been concerned with molecular mechanism. In this study, Kliesmete, Wange, and colleagues attempt to bridge this gap by studying protein and cis-regulatory element evolution for the gene TRNP1, across up to 45 mammals. They provide evidence that TRNP1 protein evolution rates and its ability to drive neural stem cell proliferation are correlated with brain size and/or cortical folding in mammals, and that activity of one TRNP1 cis-regulatory element may also predict cortical folding.

    There is a lot to like about this manuscript. Its broad evolutionary scope represents an important advance over the narrower comparisons that dominate the literature on the genetics of primate brain evolution. The integration of molecular evolution with experimental tests for function is also a strength. For example, showing that TRNP1 from five different mammals drives differences in neural stem cell proliferation, which in turn correlate with brain size and cortical folding, is a very nice result. At the same time, the paper is a good reminder of the difficulty of conclusively linking macroevolutionary patterns of trait evolution to molecular function. While TRNP1 is a moderate outlier in the correlation between rate of protein evolution and brain morphology compared to 125 other genes, this result is likely sensitive to how the comparison set is chosen; additionally, it's not clear that a correlation with evolutionary rate is what should be expected. Further, while the authors show that changes in TRNP1 sequence have functional consequences, they cannot show that these changes are directly responsible for size or folding differences, or that positive selection on TRNP1 is because of selection on brain morphology (high bars to clear). Nevertheless, their findings contribute strong evidence that TRNP1 is an interesting candidate gene for studying brain evolution. They also provide a model for how functional follow-up can enrich sequence-based comparative analysis.

  4. Reviewer #2 (Public Review):

    In this paper, Kliesmete et al. analyze the protein and regulatory evolution of TRNP1, linking it to the evolution of brain size in mammals. We feel that this is very interesting and the conclusions are generally supported, with one concern.

    The comparison of dN/dS (omega) values to 125 control proteins is helpful, but an important factor was not controlled. The fraction of a protein in an intrinsically disordered region (IDR) is potentially even more important in affecting dN/dS than the protein length or number of exons. We suggest comparing dN/dS of TRNP1 to another control set, preferably at least ~500 proteins, which have similar % IDR.

  5. Reviewer #3 (Public Review):

    In this work, Z. Kliesmete, L. Wange and colleagues investigate TRNP1 as a gene of potential interest for the evolution of the mammalian cortex. Previous evidence suggests that TRNP1 is involved in self-renewal, proliferation and expansion in cortical cells in mouse and ferret, making this gene a good candidate for evolutionary investigation. The authors designed an experimental scheme to test two non-exclusive hypotheses: first, that evolution of the TRNP1 protein is involved in the apparition of larger and more convoluted brains; and second, that regulation of the TRNP1 gene also plays a role in this process alongside protein evolution.

    The authors report that the rate of TRNP1 protein evolution is strongly correlated to brain size and gyrification, with species with larger and more convoluted brains having more divergent sequences at this gene locus. The correlation with body mass was not as strong, suggesting a functional link between TRNP1 and brain evolution. The authors directly tested the effects of sequence changes by transfecting the TRNP1 sequences from 5 different species in mouse neural stem cells and quantifying cell proliferation. They show that both human and dolphin sequences induce higher proliferation, consistent with larger brain sizes and gyrifications in these two species. Then, the authors identified six potential cis-regulatory elements around the TRNP1 gene that are active in human fetal brain, and that may be involved in its regulation. To investigate whether sequence evolution at these sites results in changes in TRNP1 expression, the authors performed a massively parallel reporter assay using sequences from 75 mammals at these six loci. The authors report that one of the cis-regulatory elements drives reporter expression levels that are somewhat correlated to gyrification in catarrhine monkeys. Consistent with the activity of this cis-regulatory sequence in the fetal brain, the authors report that this element contains binding sites for TFs active in brain development, and contains stronger binding sites for CTCF in catarrhine monkeys than in other species. However, the specificity or functional relevance of this signal is unclear.

    Altogether, this is an interesting study that combines evolutionary analysis and molecular validation in cell cultures using a variety of well-designed assays. The main conclusions - that TRNP1 is likely involved in brain evolution in mammals - are mostly well supported, although the involvement of gene regulation in this process remains inconclusive.

    Strengths:
    - The authors have done a good deal of resequencing and data polishing to ensure that they obtained high-quality sequences for the TRNP1 gene in each species, which enabled a higher confidence investigation of this locus.
    - The statistical design is generally well done and appears robust.
    - The combination of evolutionary analysis and in vivo validation in neural precursor cells is interesting and powerful, and goes beyond the majority of studies in the field. I also appreciated that the authors investigated both protein and regulatory evolution at this locus in significant detail, including performing a MPRA assay across species, which is an interesting strategy in this context.

    Weaknesses:
    - The authors report that TRNP1 evolves under positive selection, however this seems to be the case for many of the control proteins as well, which suggests that the signal is non-specific and possibly due to misspecifications in the model.
    - The evidence for a higher regulatory activity of the intronic cis-regulatory element highlighted by the authors is fairly weak: correlation across species is only 0.07, consistent with the rapid evolution of enhancers in mammals, and the correlation in catarrhine monkeys is seems driven by a couple of outlier datapoints across the 10 species. It is unclear whether false discovery rates were controlled for in this analysis.
    - The analysis of the regulatory content in this putative enhancer provides some tangential evidence but no reliable conclusions regarding the involvement of regulatory changes at this locus in brain evolution.