Interdependent progression of bidirectional sister replisomes in E. coli

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This paper reports a fundamental set of new results describing replisome organization and dynamics in E. coli. Cellular sites of active DNA replication (forks) spatially co-localize into structures termed replication factories, but the biological rationale for this fork co-localization has remained unknown. In an elegant study, the authors provide strong evidence that these factories are necessary to both coordinate and promote the progression of colocalized forks, and to help prevent them from spontaneously and prematurely dissociating. Through these findings, it is shown, for the first time, that replisomes' association has a beneficial impact on the bacterium. This is important work that provides robust data in favor of the factory and splitting model.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Bidirectional DNA replication complexes initiated from the same origin remain colocalized in a factory configuration for part or all their lifetimes. However, there is little evidence that sister replisomes are functionally interdependent, and the consequence of factory replication is unknown. Here, we investigated the functional relationship between sister replisomes in Escherichia coli , which naturally exhibits both factory and solitary configurations in the same replication cycle. Using an inducible transcription factor roadblocking system, we found that blocking one replisome caused a significant decrease in overall progression and velocity of the sister replisome. Remarkably, progression was impaired only if the block occurred while sister replisomes were still in a factory configuration – blocking one fork had no significant effect on the other replisome when sister replisomes were physically separate. Disruption of factory replication also led to increased fork stalling and requirement of fork restart mechanisms. These results suggest that physical association between sister replisomes is important for establishing an efficient and uninterrupted replication program. We discuss the implications of our findings on mechanisms of replication factory structure and function, and cellular strategies of replicating problematic DNA such as highly transcribed segments.

Article activity feed

  1. eLife assessment

    This paper reports a fundamental set of new results describing replisome organization and dynamics in E. coli. Cellular sites of active DNA replication (forks) spatially co-localize into structures termed replication factories, but the biological rationale for this fork co-localization has remained unknown. In an elegant study, the authors provide strong evidence that these factories are necessary to both coordinate and promote the progression of colocalized forks, and to help prevent them from spontaneously and prematurely dissociating. Through these findings, it is shown, for the first time, that replisomes' association has a beneficial impact on the bacterium. This is important work that provides robust data in favor of the factory and splitting model.

  2. Reviewer #1 (Public Review):

    The manuscript by Chen and colleagues contains a number of important findings. First, they showed with careful imaging, cell cycle characterization, and models that replisomes of fast-growing E. coli form factories and super factories (factories involving cousin replisomes), they estimated that factories split after the replication of 1/3 of the chromosome. Second, they used a replication fork block to monitor the interdependence of replisomes of factories. Third, they show that orphaned replisomes replicate slowly and frequently require a repair process to complete the replication cycle. This is the first characterization of an advantage of replicating bacterial genomes in a factory rather than as independent replisomes. This is an important discovery that simultaneously confirms the existence of DNA factories, a much-debated topic, and reveals one of their functions. The existence and characterization of factories were mostly addressed through imaging methods; here the combination of imaging with molecular genomics assays is a real asset for the manuscript.

  3. Reviewer #2 (Public Review):

    In most organisms, DNA replication is restricted to a relatively few cytologic structures termed replication factories. Studies indicate that such factories contain multiple replication forks. Although these observations suggest that replication fork colocalization has functional significance, the biological rationale for replication factories has remained elusive. To address this issue, the current study utilizes E. coli, a bacterium with a circular chromosome that replicates its DNA bidirectionally from a single origin of replication. During the first half of an E. coli DNA replication cycle, these two forks spatially co-localize into a single "factory." The experimental plan of this study is to block one of the two replication forks at various informative genomic locations and see if such blocks affect the progression and efficiency of the non-blocked fork. Using this approach, the authors find that blocking the progression of one fork at an early point in replication slows the progression of the corresponding unblocked fork and considerably increases its probability of replication fork collapse. This study considerably advances the field by demonstrating for the first time a possible biological purpose behind the replication factory - that factory formation in some yet unknown manner helps coordinate and stabilize bidirectionally oriented replication forks.

    Although others have tried to study replication factories using similar experimental logic, this well-written study by Chen et. al. examines the problem with higher sensitivity and resolution using a very elegant and synergistic approach that combines 3-dimensional microscopy, deep DNA sequencing, and old-fashion cell biology with a series of carefully engineered E. coli strains containing a conditional replication fork block in different informative genomic locations. These approaches in combination allow one to make a direct experimental correlation between cytologically defined replication factories (3D fluorescent imaging of labelled replication factors with image deconvolution), and fork progression via an analysis of copy number (genomics). Their experimental approach and accompanying analysis pipeline will be of general interest to the research community.

    In addition to a very careful analysis of factory formation that helps resolve several previous discrepancies on this subject, the authors used this approach to show that blocking one replication fork early in DNA replication coordinately decreases both the rate of fork progression and the level of fork stability in the unblocked sister fork. This conclusion is supported by their genomic analysis that shows the velocity of the unblocked fork slows when the other fork is blocked. To further elucidate this observation, the authors examined the likelihood that elevated replication fork collapse contributed to the decreased fork rate. As the restart of a collapsed replication fork depends upon genetic recombination, the role of recombination in fork progression in this situation was examined. Two questions were asked in this system: 1) Is the progression of the unblocked fork specifically reduced in the absence of genetic recombination (with a mutation in RecB)? and 2) Using chromatin IP, does this slow fork specifically recruit binding of a catalytically-dead Holliday-junction resolvase (RuvC)? The results from both experiments strongly support the conclusion that replication factories in some yet unknown manner are needed to stabilize the bidirectionally orientated replication forks. Although this strong conclusion indicates that the unblocked fork specifically creates DNA lesions, this approach does not unambiguously distinguish between damage resulting directly from fork collapse and damage caused by other aspects of defective DNA replication.