Distinct architectural requirements for the parS centromeric sequence of the pSM19035 plasmid partition machinery

Curation statements for this article:
  • Curated by eLife

    eLife logo

    Evaluation Summary:

    The work by Volante et al. studied a new plasmid partition system, in which the authors discovered that four or more contiguous ParS sequence repeats are required to assemble a stable partitioning ParAB complex and to activate the ParA ATPase. The work reveals a new plasmid partitioning mechanism in which the mechanic property of DNA and its interaction with the partition complex may drive the directional movement of the plasmid.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. The reviewers remained anonymous to the authors.)

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Three-component ParABS partition systems ensure stable inheritance of many bacterial chromosomes and low-copy-number plasmids. ParA localizes to the nucleoid through its ATP-dependent nonspecific DNA-binding activity, whereas centromere-like parS -DNA and ParB form partition complexes that activate ParA-ATPase to drive the system dynamics. The essential parS sequence arrangements vary among ParABS systems, reflecting the architectural diversity of their partition complexes. Here, we focus on the pSM19035 plasmid partition system that uses a ParB pSM of the ribbon-helix-helix (RHH) family. We show that parS pSM with four or more contiguous ParB pSM -binding sequence repeats is required to assemble a stable ParA pSM -ParB pSM complex and efficiently activate the ParA pSM -ATPase, stimulating complex disassembly. Disruption of the contiguity of the parS pSM sequence array destabilizes the ParA pSM -ParB pSM complex and prevents efficient ATPase activation. Our findings reveal the unique architecture of the pSM19035 partition complex and how it interacts with nucleoid-bound ParA pSM -ATP.

Article activity feed

  1. Author Response

    Evaluation Summary:

    The work by Volante et al. studied a new plasmid partition system, in which the authors discovered that four or more contiguous ParS sequence repeats are required to assemble a stable partitioning ParAB complex and to activate the ParA ATPase. The work reveals a new plasmid partitioning mechanism in which the mechanic property of DNA and its interaction with the partition complex may drive the directional movement of the plasmid.

    Thank you for the kind evaluation. But we wonder about the description of the pSM19035 partition system we studied here as “a new plasmid partition system”. This system itself is quite old. The editor might have meant “new” as a subject of a research, but plasmid partition systems involving RHH-ParB proteins have been studied by number of groups for some time, including the Alonso Lab, which has worked on the pSM19035 partition system number of years prior to our current collaboration for this paper. Therefore, we wonder if the term “new” is the most appropriate.

    Reviewer #1 (Public Review):

    This is a very thorough biochemical work that investigated the ParABS system in pSM19035 by Volante et al. Volante et al showed convincingly that a specific architecture of the centromere (parS) of pSM19035 is required to assemble a stable/functional partition complex. Minimally, four consecutive parS are required for the formation of partition complex, and to efficiently activate the ATPase activity of ParA. The work is very interesting, and the discovery will allow the community to compare and contrast to the more widespread/more investigated canonical chromosomal ParABS system (where ParB is a sliding CTPase protein clamp, and a single parS site is often sufficient to assemble a working partition complex). All the main conclusions in the abstract are justified and supported by biochemical data with appropriate controls. A proposed multistep mechanism of partition complex assembly and disassembly (summarized in Fig 6) is reasonable. Perhaps the only shortcoming of this work is that the team does not yet get to the bottom of why four consecutive parS are needed.

    Thank you for the kind evaluation. The last point is an important one. We would like to continue to test our current model to either obtain stronger supporting evidence or come up with better alternative model.

    *Reviewer #2 (Public Review):

    ParBs come in two variations, RHH and HTH. In this study, the authors examine the in vitro behavior of the RHH system, which is less studied. Two activities were carefully monitored; ATPase activation and ParA removal from DNA. The system is quite complex, but the authors have done a good job of examining parameter space. One question concerns the physiological relevance. Can this be assessed by uncoupling ParA/ParB expression (making it inducible with IPTG from the chromosome, for example) and testing plasmids with the various constructs?

    This is an excellent point; we agree this a shortcoming of the current study. As described in response to “Essential Revisions”, we very much wanted to include an experiment testing in vivo plasmid stability for different size parSpSM sites in this paper, and we put a significant effort. However, we encountered certain technical issues with the approach we tried, and we failed to obtain conclusive data in timely fashion before we run out of time. Although, we had preliminary data, which appeared to be consistent with the notion that shorter parS sites are non-functional and full-size parS sites are functional, the experiment had certain flaw, which we could not rectify immediately to our satisfaction. Therefore, we decided to postpone this part of the project and plan for broader physiological evaluation of the parSpSM sequence arrangements in near future. In the revision, we mentioned at the beginning of discussion that in vivo functional test of parSpSM site requirements still remains to be examined.

    The authors appear to suggest that the requirement for at least 4 ParB binding sites is due to the inability of ParBs of this type to spread inferring that for the ParB-HTH multiple ParBs bound to ParS are required. Has this been tested in this system?

    ParB spreading has been shown to be essential for the HTH-ParB to perform its role in partition function. We clarified the importance of HTH-ParB spreading for partition function on lines 44-45.

    In any event, another major difference between the two systems is that a peptide corresponding to the N-ter of ParB is sufficient to bind DNA indicating this type of ParB does not have to be bound to DNA to stimulate ParA. It would have been useful if the authors had commented on this.

    There seems to be a mistype here. “N-ter of ParB is sufficient to bind DNA indicating ……” is incorrect. Perhaps this was meant to be “N-ter of ParB is unable to bind DNA, indicating ……” This is not a qualitative difference between the HTH- and RHH-ParBs: the N-terminal ParA interacting peptides of HTH-ParBs also can activate their cognate ParA ATPase without parS DNA binding, and parS-dependency of ATPase activation for HTH-ParBs appears to be significantly less stringent compared to the case for RHH-ParB we report here. ParBpSM1-27 , which cannot bind parSpSM, could only stimulate ParApSM ATPase to at most 1/10 of the full size ParBpSM in the presence of active parSpSM. We clarified this on lines 156-157, and also added discussion about this contrast between the HTH- and RHH-ParBs and possible implications on lines 458-467.

    Reviewer #3 (Public Review):

    Drs. Volante, Alonso, and Mizuuchi presented a milestone experimental finding on how the distinct architecture of centromere (ParS) on bacterial plasmid drives the ParABS-mediated genome partition process. Rather than driven by cytoskeletal filament pushing or pulling as its eukaryotic counterpart, the genome partition in prokaryotes is demonstrated to operate as a burnt-bridge Brownian Ratchet, first put forward by the Mizuuchi group. To drive directed and persistent movement without linear motor proteins, this Brownian Ratchet requires two factors: 1) enough bonds (10s' to 100s') bridging the PC-bound ParB to the nucleoid-bound ParA to largely quench the diffusive motion of the PC, and 2) the PC-bound ParB 'kicks" off the nucleoid-bound ParA that can replenish the nucleoid only after a sufficient time delay, which rectifies the initial symmetry-breaking into a directed and persistent movement. Although the time delay in ParA replenishment is established as a common feature across different bacteria, the binding properties of PC-bound ParB vary greatly, which begs the question of how Brownian Ratcheting adapts to different cellular milieu to fulfill the functional fidelity.

    The finding in this work presented a new but important twist in the Brownian Ratchet paradigm. The authors showed that in the pSM19035 plasmid partition system, only four contiguous ParB-binding repeats in ParS are required for the ParA-ParB interactions that drive the PC partition. In other words, only four chemical bonds are needed for the PC partition. Crucially, the authors further demonstrated that distinct orientation (configuration?) of the ParB-binding repeats is required for this fidelity by their state-of-art biochemistry and reconstitution experiments. The authors then elaborated on a possible mechanism of how the smaller number of PC-bound ParB can drive directed and persistent PC movement by interacting with nucleoid ParA. If I understand correctly, in their proposed scheme, due to their specific orientation (configuration?), when two of the ParS-bound ParB molecules bind to the two nucleoid-bound ParA molecules there arises a torsional/distortional stress. Consequently, the thermal fluctuations preload the forming bonds, triggering the dissociation of the two ParB molecules from the PC. And the remaining PC-bound ParBs may kick off the ParAs that have a time delay in DNA-rebinding, while ParB molecules will replenish the ParS to initiate the next round. In this proposal, the key conceptual leap is that not only the substrate but the cargo remodels to underlie the Brownian Ratcheting.

    We thank the reviewer for kind evaluation of our work. The model proposed is highly speculative at this point. Despite it may appear rather detailed in order to account for the unexpected findings, we consider it only a working hypothesis to be revised or replaced by a better model in future. We thank for many useful suggestions, which we will follow in our revision.

  2. Evaluation Summary:

    The work by Volante et al. studied a new plasmid partition system, in which the authors discovered that four or more contiguous ParS sequence repeats are required to assemble a stable partitioning ParAB complex and to activate the ParA ATPase. The work reveals a new plasmid partitioning mechanism in which the mechanic property of DNA and its interaction with the partition complex may drive the directional movement of the plasmid.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. The reviewers remained anonymous to the authors.)

  3. Reviewer #1 (Public Review):

    This is a very thorough biochemical work that investigated the ParABS system in pSM19035 by Volante et al. Volante et al showed convincingly that a specific architecture of the centromere (parS) of pSM19035 is required to assemble a stable/functional partition complex. Minimally, four consecutive parS are required for the formation of partition complex, and to efficiently activate the ATPase activity of ParA. The work is very interesting, and the discovery will allow the community to compare and contrast to the more widespread/more investigated canonical chromosomal ParABS system (where ParB is a sliding CTPase protein clamp, and a single parS site is often sufficient to assemble a working partition complex). All the main conclusions in the abstract are justified and supported by biochemical data with appropriate controls. A proposed multistep mechanism of partition complex assembly and disassembly (summarized in Fig 6) is reasonable. Perhaps the only shortcoming of this work is that the team does not yet get to the bottom of why four consecutive parS are needed.

  4. Reviewer #2 (Public Review):

    ParBs come in two variations, RHH and HTH. In this study, the authors examine the in vitro behavior of the RHH system, which is less studied. Two activities were carefully monitored; ATPase activation and ParA removal from DNA. The system is quite complex, but the authors have done a good job of examining parameter space. One question concerns the physiological relevance. Can this be assessed by uncoupling ParA/ParB expression (making it inducible with IPTG from the chromosome, for example) and testing plasmids with the various constructs?

    The authors appear to suggest that the requirement for at least 4 ParB binding sites is due to the inability of ParBs of this type to spread inferring that for the ParB-HTH multiple ParBs bound to ParS are required. Has this been tested in this system? In any event, another major difference between the two systems is that a peptide corresponding to the N-ter of ParB is sufficient to bind DNA indicating this type of ParB does not have to be bound to DNA to stimulate ParA. It would have been useful if the authors had commented on this.

  5. Reviewer #3 (Public Review):

    Drs. Volante, Alonso, and Mizzuchi presented a milestone experimental finding on how the distinct architecture of centromere (ParS) on bacterial plasmid drives the ParABS-mediated genome partition process. Rather than driven by cytoskeletal filament pushing or pulling as its eukaryotic counterpart, the genome partition in prokaryotes is demonstrated to operate as a burnt-bridge Brownian Ratchet, first put forward by the Mizuuchi group. To drive directed and persistent movement without linear motor proteins, this Brownian Ratchet requires two factors: 1) enough bonds (10s' to 100s') bridging the PC-bound ParB to the nucleoid-bound ParA to largely quench the diffusive motion of the PC, and 2) the PC-bound ParB 'kicks" off the nucleoid-bound ParA that can replenish the nucleoid only after a sufficient time delay, which rectifies the initial symmetry-breaking into a directed and persistent movement. Although the time delay in ParA replenishment is established as a common feature across different bacteria, the binding properties of PC-bound ParB vary greatly, which begs the question of how Brownian Ratcheting adapts to different cellular milieu to fulfill the functional fidelity.

    The finding in this work presented a new but important twist in the Brownian Ratchet paradigm. The authors showed that in the pSM19035 plasmid partition system, only four contiguous ParB-binding repeats in ParS are required for the ParA-ParB interactions that drive the PC partition. In other words, only four chemical bonds are needed for the PC partition. Crucially, the authors further demonstrated that distinct orientation of the ParB-binding repeats is required for this fidelity by their state-of-art biochemistry and reconstitution experiments. The authors then elaborated on a possible mechanism of how the smaller number of PC-bound ParB can drive directed and persistent PC movement by interacting with nucleoid ParA. If I understand correctly, in their proposed scheme, due to their specific orientations, when two of the ParS-bound ParB molecules bind to the two nucleoid-bound ParA molecules there arises a torsional/distortional stress. Consequently, the thermal fluctuations preload the forming bonds, triggering the dissociation of the two ParB molecules from the PC. And the remaining PC-bound ParBs may kick off the ParAs that have a time delay in DNA-rebinding, while ParB molecules will replenish the ParS to initiate the next round. In this proposal, the key conceptual leap is that not only the substrate but the cargo remodels to underlie the Brownian Ratcheting.