A novel rhesus macaque model of Huntington’s disease recapitulates key neuropathological changes along with motor and cognitive decline

Curation statements for this article:
  • Curated by eLife

    eLife logo

    Evaluation Summary:

    The authors show the utility of an AAV-based approach in non-human primates to develop an improved model of Huntington's disease. They have presented a very thorough, carefully executed, body of work that will be of benefit to a range of researchers studying HD or developing therapies for HD. While this extends the work from an earlier paper (that presented the tools used to induce phenotypes) the results presented are new, relevant, and important to the community.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. The reviewers remained anonymous to the authors.)

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

We created a new nonhuman primate model of the genetic neurodegenerative disorder Huntington’s disease (HD) by injecting a mixture of recombinant adeno-associated viral vectors, serotypes AAV2 and AAV2.retro, each expressing a fragment of human mutant HTT ( mHTT ) into the caudate and putamen of adult rhesus macaques. This modeling strategy results in expression of mutant huntingtin protein (mHTT) and aggregate formation in the injected brain regions, as well as dozens of other cortical and subcortical brain regions affected in human HD patients. We queried the disruption of cortico-basal ganglia circuitry for 30 months post-surgery using a variety of behavioral and imaging readouts. Compared to controls, mHTT-treated macaques developed working memory decline and progressive motor impairment. Multimodal imaging revealed circuit-wide white and gray matter degenerative processes in several key brain regions affected in HD. Taken together, we have developed a novel macaque model of HD that may be used to develop disease biomarkers and screen promising therapeutics.

Article activity feed

  1. Evaluation Summary:

    The authors show the utility of an AAV-based approach in non-human primates to develop an improved model of Huntington's disease. They have presented a very thorough, carefully executed, body of work that will be of benefit to a range of researchers studying HD or developing therapies for HD. While this extends the work from an earlier paper (that presented the tools used to induce phenotypes) the results presented are new, relevant, and important to the community.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. The reviewers remained anonymous to the authors.)

  2. Reviewer #1 (Public Review):

    Weiss et al have developed a novel model of Huntington's disease (HD) by injecting a mixture of recombinant adeno-associated viral vectors (AAVs) into the caudate and putamen of rhesus macaque monkeys. There is a significant need for relevant models of HD. While many mouse models exist, current models lack genetic relevance (with repeat lengths much longer than those found in humans being used) and mice lack the anatomical relevance to humans since they have small brains with important brain regions (in particular the neostriatum) being dissimilar to those seen in humans. The authors used non-human primates because they have large brains with anatomy similar to humans. They used a mixture of recombinant adeno-associated viral vectors (AAVs) in an attempt to overcome the shortcomings of previous models using …

  3. Reviewer #2 (Public Review):

    The authors show the utility of an AAV-based approach in NHPs to develop an improved model of Huntington's disease. They have presented a very thorough, carefully executed, body of work that will be of benefit to a range of researchers studying HD or developing therapies for HD. While this extends the work from an earlier paper (that presented the tools used to induce phenotypes) the results presented are new, relevant, and important to the community.

    The major strengths of the work are the careful assessments done on the animals and the comparators to known human data in HD patients. This includes the behavior testing and the imaging. The data support the conclusions as presented. The major weaknesses are the manner in which the data is presented - it is very hard for the generalist to make sense of many of …

  4. Author Response

    Reviewer #1 (Public Review):

    1. “The major weakness of the study is that with the interpretation of the results. The changes in tractography, behavior and TBM are what would be expected following lesions of the neostriatum”

    We appreciate this comment and would like to offer clarification. We respectfully disagree that the pattern of results presented in this manuscript are akin to what would be expected following striatal lesions. In NHPs, striatal lesions typically cause more extreme phenotypes than what we observed in our 85Q-treated animals. In macaques, bilateral putamen lesions can result in phenotypes that include seizures, inappetence, hyper-aggression, and other severe features. This strongly impacts clinical scores and can make it unfeasible to care for the animals for multiple years. For these reasons, …