Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This paper will be of interest to scientists in the fields of virology, entomology, ecology and epidemiology as the paper explores the drivers of viral and host composition in natural and disturbed ecosystems. The data are of high quality and have been rigorously assessed.However, important additional information on the transmission ecology of these viruses and their relationship with the environment is lacking, making it difficult to interpret the results from a disease ecology perspective.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host–pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d’Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi -, Rhabdo -, Reo -, Toga -, Mesoni - and Iflaviridae and the order Bunyavirales . Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species ( Culex nebulosus ), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.

Article activity feed

  1. eLife assessment

    This paper will be of interest to scientists in the fields of virology, entomology, ecology and epidemiology as the paper explores the drivers of viral and host composition in natural and disturbed ecosystems. The data are of high quality and have been rigorously assessed.However, important additional information on the transmission ecology of these viruses and their relationship with the environment is lacking, making it difficult to interpret the results from a disease ecology perspective.

  2. Reviewer #1 (Public Review):

    Hermanns et al., investigated the virus diversity and prevalence patterns in conjunction with mosquito community compositions in natural and disturbed ecosystems (5 habitats) within the Tai National Park in Cote d'Ivorie. The ultimate aim was to analyse the interplay between viral biodiversity and prevalence with mosquito host biodiversity and prevalence. Pools of morphologically identified mosquitoes from pristine forest habitats through to habitats of high human disturbance were analysed for the presence of viruses of 12 major mosquito-borne virus taxa. While 15 of the viruses detected have been published previously, 34 potentially new viruses were detected of which the full genome of 5 was completely elucidated for phylogenetic analysis and temperature-dependent replication of 4 was performed. Via comprehensive analyses of the biodiversity of the viruses detected in mosquitoes collected within each habitat, it was shown that i) the highest virus richness was observed in the intermediately disturbed habitats, ii) that the prevalence of viruses corresponded to the relative abundance of the main mosquito host species that carried them, but iii) when just the main host mosquito for each virus was analysed alone in each habitat, that there was no trend in increasing or decreasing virus prevalence.

    The conclusions within the paper were generally well-justified, but a caveat of the study is that the (likely) mechanisms of transmission of the viruses identified in the paper were not discussed. Many of these viruses are most likely maintained in nature via vertical transmission and thus, this information needs to be taken into consideration. Due to the fact that it is likely that many of these insect-specific viruses evolve with their mosquito host, it was not surprising that if there was an increased abundance of a particular mosquito species, that there was also increased prevalence of the virus which it hosts. Of course, this may differ depending on the viral family, but requires comment in the context of what is known. Furthermore, there requires clarification as to why analysing insect-specific virus prevalence and diversity will serve as a model for the study of typical arboviruses due to the differences in their maintenance in nature.

    For many of the putative new viruses, only small sequences of less than 1200 nt were analysed. Granted that the RdRp is the most conserved gene, how was the 5% demarcation for a new species determined when established criteria differ to this.

  3. Reviewer #2 (Public Review):

    In this manuscript authors make an important contribution to the diversity of mosquito specific viruses, describing the genetic diversity of RNA viruses from the family Culicidae, along an anthropogenic-disturbance gradient in Côte d'Ivoire in 2004.
    The manuscript is methodologically rigorous from the virologic perspective; molecular techniques were standardized to perform virus detection, increasing the detection potential from a previous published work by the team from five to 49 viruses (331 viral sequences pertaining to 49 viruses of ten RNA-virus families).
    It is rich in terms of the genetic diversity of mosquito specific viruses, but not as strong from the entomological and ecological perspectives. Mosquito specific viruses are analyzed under the lens of pathogens with public health importance, which is confusing.
    One of the major information gaps are the potential transmission routes or sources of infection of the detected viruses. Mosquito specific viruses can be transmitted vertically or horizontally, and are in general strongly associated with the environment, but not related with other hosts such as vertebrates. From this perspective, the ecology of transmission of these viruses should not be compared to pathogens that use vertebrate hosts. The authors found 49 viruses, but emphasize the ecological relevance of their findings to five viruses with increased prevalence from pristine to disturbed habitats, to show a dilution effect.
    Another suggested important contribution is the finding of an "abundance effect", suggesting that higher prevalence in degraded ecosystems is the result of host abundance, but additional ecological information is missing on the potential mechanisms leading to this effect. Breeding sites may be a main source of variation in species composition and abundances among habitats, but no comments on this are found on the manuscript.
    Some additional useful information could be provided to better understand mosquito sampling, for instance: the number of traps used, duration of sampling in each locality, and sampling dates to understand if there could be seasonal variation.
    In conclusion the manuscript is interesting and well written. The virologic component is strong, but its relation to the ecological determinants should be improved.

  4. Reviewer #3 (Public Review):

    One challenge with this study doing descriptive mosquito and virus work in a remote location is the uncertainly with species identification for both mosquitoes and viruses. It appears that nearly half of the mosquitoes in three of the study sites could not be identified to species. This appears problematic for the estimation of host (mosquito) richness and diversity along the anthropogenic gradient. Viral taxonomy is also complicated and this study is presenting many new viruses which, based on partial or whole sequencing, are putative novel viruses. It is not clear how many of these novel viruses would be accepted by current practices endorsed by the International Committee on Taxonomy of Viruses. The viral taxa uncertainty add complexity for the current analysis. How many of these viral lineages that cluster together are variants of the same virus? How many are unique taxonomic units? This has important consequences on the application of these data to the analyses conducted in this study.

    On a related front, many of these viruses the authors are documented are mostly Insect-specific viruses (ISVs). But it also appears that several could be amplified by vertebrate hosts with poorly understood natural history and for the purposes of this study, all of the viral taxa appear to be grouped together. The inclusion of all viruses is therefore somewhat confounding given the very different natural history associated with these viruses. You frequently refer to 'hosts' throughout the MS and for ISVs, the host would likely only be mosquitoes but for arboviruses involving vertebrate amplification hosts, the hosts would be both the mosquitoes and the vertebrates. This study did not quantify any aspect of vertebrate host abundance, diversity, or richness across the gradient. Since most of this study focuses just on the ISVs as a unique system to test the hypotheses, it would be interesting if the authors restricted the analysis to just those viruses with higher probability of being restricted to mosquitoes (e.g. based on phylogenetic placement) to see if the results remain the same.

    You report an anthropogenic disturbance gradient from primary forest to village habitat but how was this quantified? How is a village more disturbed than an agricultural field (rice plantation?)? The method to rank these study sites, which becomes important for the analysis, was not described in the methods. Also, along this topic of study sites, it appears you really only had one replicate of each of the study site type. To test these hypotheses on how host communities influence viral communities it would seem prudent to have had multiple replicates of each study area.