Insulin-producing β-cells regenerate ectopically from a mesodermal origin under the perturbation of hemato-endothelial specification

Curation statements for this article:
  • Curated by eLife

    eLife logo

    Evaluation Summary:

    This is an elegant study demonstrating the emergence of mesoderm-derived beta-like cells following beta-cell ablation in an endothelial cell deficient context. These findings will be of interest to scientists in the areas of regeneration and reprogramming, as they reveal a previously unknown degree of germ layer plasticity in the embryo. In the long term the study has potential impact in the diabetes field, as it reveals a novel path for redirecting somatic cells into insulin-producing cells in an in vivo context.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. Reviewer #1 and Reviewer #3 agreed to share their names with the authors.)

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

To investigate the role of the vasculature in pancreatic β-cell regeneration, we crossed a zebrafish β-cell ablation model into the avascular npas4l mutant (i.e. cloche ). Surprisingly, β-cell regeneration increased markedly in npas4l mutants owing to the ectopic differentiation of β-cells in the mesenchyme, a phenotype not previously reported in any models. The ectopic β-cells expressed endocrine markers of pancreatic β-cells, and also responded to glucose with increased calcium influx. Through lineage tracing, we determined that the vast majority of these ectopic β-cells has a mesodermal origin. Notably, ectopic β-cells were found in npas4l mutants as well as following knockdown of the endothelial/myeloid determinant Etsrp. Together, these data indicate that under the perturbation of endothelial/myeloid specification, mesodermal cells possess a remarkable plasticity enabling them to form β-cells, which are normally endodermal in origin. Understanding the restriction of this differentiation plasticity will help exploit an alternative source for β-cell regeneration.

Article activity feed

  1. Joint Public Review:

    The manuscript by Liu and colleagues is a very elegant study demonstrating the emergence of ectopic beta cells after beta cell specific ablation in zebrafish pancreas in a context in which vascularization of the larvae was altered in either npas4l mutants or etv2 morphants. Provocatively, the authors demonstrate the mesodermal origin of ectopic and functional beta cells using 2 mesodermal mapping strategies. This study is very well conducted with appropriate controls and rigorous statistical analyses. This study will likely impact the field of pancreas regeneration providing a novel source for beta cells within the adjacent mesodermal tissue.

  2. Evaluation Summary:

    This is an elegant study demonstrating the emergence of mesoderm-derived beta-like cells following beta-cell ablation in an endothelial cell deficient context. These findings will be of interest to scientists in the areas of regeneration and reprogramming, as they reveal a previously unknown degree of germ layer plasticity in the embryo. In the long term the study has potential impact in the diabetes field, as it reveals a novel path for redirecting somatic cells into insulin-producing cells in an in vivo context.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. Reviewer #1 and Reviewer #3 agreed to share their names with the authors.)