Relative demographic susceptibility does not explain the extinction chronology of Sahul’s megafauna

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The causes of Sahul’s megafauna extinctions remain uncertain, although several interacting factors were likely responsible. To examine the relative support for hypotheses regarding plausible ecological mechanisms underlying these extinctions, we constructed the first stochastic, age-structured models for 13 extinct megafauna species from five functional/taxonomic groups, as well as 8 extant species within these groups for comparison. Perturbing specific demographic rates individually, we tested which species were more demographically susceptible to extinction, and then compared these relative sensitivities to the fossil-derived extinction chronology. Our models show that the macropodiformes were the least demographically susceptible to extinction, followed by carnivores, monotremes, vombatiform herbivores, and large birds. Five of the eight extant species were as or more susceptible than the extinct species. There was no clear relationship between extinction susceptibility and the extinction chronology for any perturbation scenario, while body mass and generation length explained much of the variation in relative risk. Our results reveal that the actual mechanisms leading to the observed extinction chronology were unlikely related to variation in demographic susceptibility per se, but were possibly driven instead by finer-scale variation in climate change and/or human prey choice and relative hunting success.

Article activity feed

  1. This manuscript is in revision at eLife

    The decision letter after peer review, sent to the authors on January 10 2021, follows.

    Summary

    The reviewers agree that this is an interesting and useful contribution for understanding LQ extinctions, and that it is generally well-presented. It shows that the factors that increase extinction risk are de-coupled from the factors that eventually lead to extinction and thus in its timing. However, the reviewers also note that although the modelling approach is novel, it is reliant on datasets that are biased and at times these biases are not well-accounted for. Because much of the conclusions drawn from the modelling could already be drawn from existing records and using literature that is glossed over here, attention to that literature should be improved and the contributions beyond the megafauna debate should be emphasized. Furthermore, the authors should take care to improve clarity in the framing of the models, the presentation and interpretation of results, figures, and discussion.

    Essential Revisions

    1. ADDITIONAL ANALYSES (no additional data collection). The reviewers had specific concerns about the effects of sampling on the extinction chronology and the influence of body mass on a number of things (recovery potential, life history/demographic correlates, etc). Specifically, the analytical issues that present the biggest problems revolve around sampling uncertainty and body mass correlation. The former could be addressed by introducing some sensitivity tests. These could be directed towards chronological biases (how does removing one date affect the confidence intervals?), as well as geographical sampling biases (how does removing a region affect the trends?). The latter in particular would be important in the claims of a continental trend. It is also possible that biases are a function of taxon sampling. There are an increasing number of small mammal Pleistocene extinctions being recognized in Australia, and it is unclear if these follow the same trends as the megafauna. If so, that would indeed remove the body size issues.

    2. BETTER FRAMING OF THE FIVE PUTATIVE DRIVERS OF EXTINCTIONS:

    (i) appears to assume that only human hunting will differentially affect demographically sensitive species. However, novel or extreme climate change can also affect such species (e.g. Selwood, K.E., McGeoch, M.A. and Mac Nally, R., 2015. The effects of climate change and land‐use change on demographic rates and population viability. Biological Reviews, 90(3), pp.837-853.)

    (ii) this mechanism is predicated on using a modelling result [ref. 25] as data. It also makes the bold claim that species inhabiting certain habitats are less accessible to human hunters without any consideration of the archaeological or modern record on this point (e.g. Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. and Boivin, N., 2017. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nature Plants, 3(8), pp.1-9; Fa, J.E. and Brown, D., 2009. Impacts of hunting on mammals in African tropical moist forests: a review and synthesis. Mammal Review, 39(4), pp.231-264).

    (iv) many of the supporting references here do not seem like logical choices for this argument. E.g. [28] refers to coral-reef fishes. Moreover, this hypothesis conflicts with much modern data showing that extinction risk and body size are correlated under climate and environmental change (e.g. Cardillo, M., Mace, G.M., Jones, K.E., Bielby, J., Bininda-Emonds, O.R., Sechrest, W., Orme, C.D.L. and Purvis, A., 2005. Multiple causes of high extinction risk in large mammal species. Science, 309(5738), pp.1239-1241. Liow, L.H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L. and Stenseth, N.C., 2008. Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences, 105(16), pp.6097-6102. Tomiya, S., 2013. Body size and extinction risk in terrestrial mammals above the species level. The American Naturalist, 182(6), pp.E196-E214.)

    1. MORE NUANCED INTERPRETATION OF MODEL OUTPUT.

    The major weakness in this manuscript is in the discussion. The authors should be very clear in their discussion that their model does not indicate that demographic factors had no part in extinct events per se, but rather that they don't explain extinction chronology. Extinction chronologies reflect a number of different factors and processes, but they don't take away from the fact that certain life history traits can make a species more likely to go extinct from those factors.

    The authors seem to argue that demographics don't explain the megafaunal extinction in the Sahul, but in fact, their results suggest that they do; the only thing demographics by themselves don't explain is the chronology. Extinction risk as determined by demographic susceptibility is highly related to body mass and generation time (which in turn is also affected by body mass) but differential survival (timing of extinction) is determined by factors such as geographic range size, dispersal ability, access to refugia, and behavioral and morphological adaptations against hunting, and the ability to survive catastrophic events. A reiteration of this point would be beneficial to the clarity of this otherwise well written manuscript.

    The authors clearly (and elegantly) show that extinct species, which were all large, and had long generation times, had demographic traits that made them more susceptible to extinction. This is evident in figures 3 and 4. However, in the discussion, in lines 301-303, they state that no demographic trends explain the extinction. This is not supported by the results. While the timing of when species go extinct doesn't correlate with demographic susceptibility, the peculiar nature of the extinction-a large size biased extinction-is explained by demographic factors, and is a phenomenon that has been explored in a global analysis by Lyons et al. 2016 Biol. Lett. Therefore, demographic trends DO explain why certain species go extinct, while others survive. The authors should be careful when they say that "that no obvious demographic trends can explain the great Sahul mass extinction event"; instead, they should re-iterate that no obvious demographic trend explains the extinction chronology.

    1. MORE CAREFUL DISCUSSION OF RESULTS RELATIVE TO LITERATURE. The authors further go on to suggest that their results suggest that the extinctions were random, but the size-selectivity clearly shows that the extinctions were in fact not random with respect to body size.Their analyses do show that the rate of extinction doesn't exceed background to the same degree that it's been suggested in prior studies, and this is something that researchers need to explore further. Also, the authors raise an important point in lines 309-311 that human hunting could have interacted with demographic susceptibility, something that Lyons et al. 2016 Biol. Lett. show, and the results of the present study should be discussed in light of the 2016 paper.

    They also raise an important point in lines 312-320 that behavioral or morphological adaptations may have allowed some seemingly "high risk" species to persist despite anthropogenic pressure. These model "mis-matches" have been reported by Alroy 2001 Science as well in a multispecies overkill simulation. It would be beneficial to discuss the present results within the context of other examples of model mismatches, such as those from Alroy 2001.

    In lines 353-358, the authors once again state that their results show no clear relationship between body-mass and demographic disadvantage, despite clearly showing these relationships in Figures 3 and 4, and even stating as much in the beginning of the discussion. The plots clearly show that large bodied taxa were at a demographic disadvantage. There is a difference between explaining why certain taxa go extinct vs. why they go extinct at a certain point in time, and this should be made clear. The authors are correct in stating that demographic factors don't explain the relative extinction chronology, i.e. when species go extinction relative to each other, but they do explain why large species go extinct, and why these extinctions take place after human arrival. Moreover, generation length, which is also correlated with demographic susceptibility, is highly correlated with body mass (Brook and Bowman 2005 Pop. Ecol), once again showing that body mass-related effects do help explain the extinctions.

    The authors rightfully point out earlier in the discussion that spatial variation, local climates, ecological interactions, etc. all influence how and why a particular population disappears. Extinction chronologies reflect a number of different factors and processes, but they don't take away from the fact that certain life history traits can make a species more likely to go extinct from those factors. Large proboscideans like mammoths had a high risk of extinction based on life history traits, but managed to survive on island refugia into the mid-Holocene. Similar other examples exist, and show that extinction chronologies can vary vastly.

    Therefore, the lack of correlation can be explained by these factors, and the authors need to expand on these in their discussion, perhaps if possible, by giving specific examples. They should be more careful in their discussion by clearly distinguishing drivers of extinction risk, and how these drivers can be de-coupled from timing, but at the same time providing a good explanation for the biological factors leading to the extinction. Here again the authors should consider the work of Brook and Bowman and Lyons et al.