Insights into substrate binding and utilization by hyaluronan synthase

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This work provides a fundamental molecular mechanism of how a single enzyme can coordinate the ordered assembly of hyaluronan, a complex polysaccharide, from two different building blocks in an alternating pattern. The authors present compelling evidence by combining high-resolution structural data with rigorous biochemical validation to define the underlying process. Major strengths of the study include the clarity and coherence of the mechanistic insights and the complementary use of structural and functional approaches to address the research question.

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Hyaluronan (HA) is an essential polysaccharide of the vertebrate extracellular matrix. It serves as an adhesive, lubricant, signaling molecule, and spatial filler without which embryogenesis would not complete. HA is synthesized by a membrane-integrated glycosyltransferase (HAS) that polymerizes UDP-activated N-acetylglucosamine and glucuronic acid (GlcA) in an alternating fashion. The nascent HA chain is secreted across the plasma membrane during this process. How HAS couples these tasks remains poorly understood. Here, we employ a combination of structural biology, biochemistry and glycobiology to delineate how HAS recognizes and utilizes UDP-GlcA. Using single-particle cryo-EM, we reveal a two-step process by which HAS binds its substrate UDP-GlcA. Prior to proper insertion into the catalytic pocket, the substrate is bound in a proofreading pose that may increase substrate selectivity. This state is accompanied by conformational changes of active site residues surrounding the UDP-binding pocket and involves a pair of basic residues that sense the substrate’s carboxyl group. Further, we establish that HAS is unable to catalyze UDP-GlcA turnover in the absence of an acceptor sugar, emphasizing the role of a priming GlcNAc in glycosyl transfer. Lastly, cryo-EM snapshots of a dodecylmaltoside molecule trapped in the active site provide novel insights into substrate promiscuity. Here, our studies demonstrate that HAS catalyzes semi-selective GlcA-transfer to non-canonical β-linked acceptors.

Article activity feed

  1. eLife Assessment

    This work provides a fundamental molecular mechanism of how a single enzyme can coordinate the ordered assembly of hyaluronan, a complex polysaccharide, from two different building blocks in an alternating pattern. The authors present compelling evidence by combining high-resolution structural data with rigorous biochemical validation to define the underlying process. Major strengths of the study include the clarity and coherence of the mechanistic insights and the complementary use of structural and functional approaches to address the research question.

  2. Reviewer #1 (Public review):

    Summary:

    This manuscript describes critical intermediate reaction steps of a HA synthase at the molecular level; specifically, it examines the 2nd step, polymerization, adding GlcA to GlcNAc to form the initial disaccharide of the repeating HA structure. Unlike the vast majority of known glycosyltransferases, the viral HAS (a convenient proxy extrapolated to resemble the vertebrate forms) uses a single pocket to catalyze both monosaccharide transfer steps. The authors' work illustrates the interactions needed to bind & proof-read the UDP-GlcA using direct and '2nd layer' amino acid residues. This step also allows the HAS to distinguish the two UDP-sugars; this is very important as the enzymes are not known or observed to make homopolymers of only GlcA or GlcNAc, but only make the HA disaccharide repeats GlcNAc-GlcA.

    Strengths:

    Overall, the strengths of this paper lie in its techniques & analysis.

    The authors make significant leaps forward towards understanding this process using a variety of tools and comparisons of wild-type & mutant enzymes. The work is well presented overall with respect to the text and illustrations (especially the 3D representations), and the robustness of the analyses & statistics is also noteworthy.

    Furthermore, the authors make some strides towards creating novel sugar polymers using alternative primers & work with detergent binding to the HAS. The authors tested a wide variety of monosaccharides and several disaccharides for primer activity and observed that GlcA could be added to cellobiose and chitobiose, which are moderately close structural analogs to HA disaccharides. Did the authors also test the readily available HA tetramer (HA4, [GlcA-GlcNAc]2) as a primer in their system? This is a highly recommended experiment; if it works, then this molecule may also be useful for cryo-EM studies of CvHAS as well.

    Weaknesses:

    In the past, another report describing the failed attempt of elongating short primers (HA4 & chitin oligosaccharides larger than the cello- or chitobiose that have activity in this report) with a vertebrate HAS, XlHAS1, an enzyme that seems to behave like the CvHAS ( https://pubmed.ncbi.nlm.nih.gov/10473619/); this work should probably be cited and briefly discussed. It may be that the longer primers in the 1999 paper and/or the different construct or isolation specifics (detergent extract vs crude) were not conducive to the extension reaction, as the authors extracted recombinant enzyme.

    There are a few areas that should be addressed for clarity and correctness, especially defining the class of HAS studied here (Class I-NR) as the results may (Class I-R) or may not (Class II) align (see comment (a) below), but overall, a very nicely done body of work that will significantly enhance understanding in the field.

  3. Reviewer #2 (Public review):

    Summary:

    The paper by Stephens and co-workers provides important mechanistic insight into how hyaluronan synthase (HAS) coordinates alternating GlcNAc and GlcA incorporation using a single Type-I catalytic centre. Through cryo-EM structures capturing both "proofreading" and fully "inserted" binding poses of UDP-GlcA, combined with detailed biochemical analysis, the authors show how the enzyme selectively recognizes the GlcA carboxylate, stabilizes substrates through conformational gating, and requires a priming GlcNAc for productive turnover.

    These findings clarify how one active site can manage two chemically distinct donor sugars while simultaneously coupling catalysis to polymer translocation.

    The work also reports a DDM-bound, detergent-inhibited conformation that possibly illuminates features of the acceptor pocket, although this appears to be a purification artefact (it is indeed inhibitory) rather than a relevant biological state.

    Overall, the study convincingly establishes a unified catalytic mechanism for Type-I HAS enzymes and represents a significant advance in understanding HA biosynthesis at the molecular level.

    Strengths:

    There are many strengths.

    This is a multi-disciplinary study with very high-quality cryo-EM and enzyme kinetics (backed up with orthogonal methods of product analysis) to justify the conclusions discussed above.

    Weaknesses:

    There are few weaknesses.

    The abstract and introduction assume a lot of detailed prior knowledge about hyaluronan synthases, and in doing so, risk lessening the readership pool.

    A lot of discussion focuses on detergents (whose presence is totally inhibitory) and transfer to non-biological acceptors (at high concentrations). This risks weakening the manuscript.