A Toolkit for In Vivo Mapping and Modulating Neurotransmission at Single-Cell Resolution
Curation statements for this article:-
Curated by eLife
eLife Assessment
This study presents an important toolkit for visualising the endogenous expression of four classes of neurotransmitter vesicular transporters. Using their toolkit, the authors find that there is co-transmission of neurotransmitters in over 10% of neurons tested. Although the evidence presented in the manuscript is solid, one weakness of this study is the failure of the authors to compare and contrast their results with available single-cell sequencing datasets and with well-established synaptic reporter lines (i.e., co-localization experiments). This toolkit will be of great use to multiple labs, and the authors should indicate their plan to disseminate the reagents and the associated information that is part of this kit.
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (eLife)
Abstract
Understanding the organization and regulation of neurotransmission at the level of individual neurons and synapses requires tools that can track and manipulate transmitter-specific vesicles in vivo. Here, we present a suite of genetic tools in Caenorhabditis elegans to fluorescently label and conditionally ablate the vesicular transporters for glutamate, GABA, acetylcholine, and monoamines. Using a structure-guided approach informed by protein topology and evolutionary conservation, we engineered endogenously tagged versions for each transporter that maintain their physiological function while allowing for cell-specific, bright, and stable visualization. We also developed conditional knockout strains that enable targeted disruption of neurotransmitter synthesis or packaging in single neurons. We applied this toolkit to map co-expression of vesicular transporters across the C. elegans nervous system, revealing that over 10% of neurons exhibit co-transmission. Using the ADF sensory neuron as a case study, we demonstrate that serotonin and acetylcholine are trafficked in partially distinct vesicle pools. Our approach provides a powerful platform for mapping, monitoring, and manipulating neurotransmitter identity and use in vivo. The molecular strategies described here are likely applicable across species, offering a generalizable approach to dissect synaptic communication in vivo.
Article activity feed
-
-
-
eLife Assessment
This study presents an important toolkit for visualising the endogenous expression of four classes of neurotransmitter vesicular transporters. Using their toolkit, the authors find that there is co-transmission of neurotransmitters in over 10% of neurons tested. Although the evidence presented in the manuscript is solid, one weakness of this study is the failure of the authors to compare and contrast their results with available single-cell sequencing datasets and with well-established synaptic reporter lines (i.e., co-localization experiments). This toolkit will be of great use to multiple labs, and the authors should indicate their plan to disseminate the reagents and the associated information that is part of this kit.
-
Reviewer #1 (Public review):
Summary:
This study presents a novel toolkit for visualizing and manipulating neurotransmitter-specific vesicles in C. elegans neurons, addressing the challenge of tracking neurotransmitter dynamics at the level of individual synapses. The authors engineered endogenously tagged vesicular transporters for glutamate, GABA, acetylcholine, and monoamines, enabling cell-specific labeling while maintaining physiological function. Additionally, they developed conditional knockout strains to disrupt neurotransmitter synthesis in single neurons. The study reveals that over 10% of neurons in C. elegans exhibit co-transmission, with a detailed case study on the ADF sensory neuron, where serotonin and acetylcholine are trafficked in distinct vesicle pools. The approach provides a powerful platform for studying …
Reviewer #1 (Public review):
Summary:
This study presents a novel toolkit for visualizing and manipulating neurotransmitter-specific vesicles in C. elegans neurons, addressing the challenge of tracking neurotransmitter dynamics at the level of individual synapses. The authors engineered endogenously tagged vesicular transporters for glutamate, GABA, acetylcholine, and monoamines, enabling cell-specific labeling while maintaining physiological function. Additionally, they developed conditional knockout strains to disrupt neurotransmitter synthesis in single neurons. The study reveals that over 10% of neurons in C. elegans exhibit co-transmission, with a detailed case study on the ADF sensory neuron, where serotonin and acetylcholine are trafficked in distinct vesicle pools. The approach provides a powerful platform for studying neurotransmitter identity, synaptic architecture, and co-transmission.
Strengths:
(1) This toolkit offers a generalizable framework that can be applied to other model organisms, advancing the ability to investigate synaptic plasticity and neural circuit logic with molecular precision.
(2) Through the use of this toolkit, the authors uncover molecular heterogeneity at individual synapses, revealing co-transmission in over 10% of neurons, and offer new insights into neurotransmitter trafficking and synaptic plasticity, advancing our understanding of synaptic organization.
Weaknesses:
(1) While the article introduces valuable tools for visualizing neurotransmitter vesicles in vivo, the core techniques are based on previously established methods. The study does not present significant technological breakthroughs, limiting the novelty of the methodological advancements.
(2) The article does not fully explore the potential implications or the underlying mechanisms governing this process, while the discovery of co-transmission in over 10% of neurons is an intriguing finding. A deeper investigation into the functional uniqueness and interactions of neurotransmitters released from individual co-transmitting neurons - perhaps through case study examples - would strengthen the study's impact.
-
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors developed fluorescent reporters to visualize the subcellular localization of vesicular transporters for glutamate, GABA, acetylcholine, and monoamines in vivo. They also developed cell-specific knockout methods for these vesicular transporters. To my knowledge, this is the first comprehensive toolkit to label and ablate vesicular transporters in C. elegans. They carefully and strategically designed the reporters and clearly explained the rationale behind their construct designs. Meanwhile, they used previously established functional assays to confirm that the reporters are functional. They also tested and confirmed the effect of cell-specific and pan-neuronal knockout of several of these transporters.
Strengths:
The tools developed are versatile: they generated both …
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors developed fluorescent reporters to visualize the subcellular localization of vesicular transporters for glutamate, GABA, acetylcholine, and monoamines in vivo. They also developed cell-specific knockout methods for these vesicular transporters. To my knowledge, this is the first comprehensive toolkit to label and ablate vesicular transporters in C. elegans. They carefully and strategically designed the reporters and clearly explained the rationale behind their construct designs. Meanwhile, they used previously established functional assays to confirm that the reporters are functional. They also tested and confirmed the effect of cell-specific and pan-neuronal knockout of several of these transporters.
Strengths:
The tools developed are versatile: they generated both green and red fluorescent reporters for easy combination with other reporters; they established the method for cell-type-specific KO to analyze the function of the neurotransmitter in different cell types. The reagents allow visualization of specific synapses among other processes and cell bodies. In addition, they also developed a binary expression method to detect co-transmission "We reasoned that if two neurotransmitters were co-expressed in the same neuron, driving Flippase under the promoter of one transmitter would activate the conditional reporter - resulting in fluorescence - only in cells also expressing a second neurotransmitter identity". Overall, this is a versatile and valuable toolkit with well-designed and carefully validated reagents. This toolkit will likely be widely used by the C. elegans community.
Weaknesses:
The authors evaluated the positions of fluorescent puncta by visually comparing their positions with the positions of synapses indicated by EM reconstruction. It would provide stronger supportive evidence if the authors also examined co-localization of these reporters with well-established synaptic reporters previously published by their lab, such as reporters that label presynaptic sites of AIY interneurons.
This toolkit will likely be widely used by the C. elegans community. To facilitate the adoption of the approach and method by worm labs, the authors should include their plan for the dissemination of all of the reagents included in the kit, along with all of the associated information, including construct sequences and the protocols for their use.
-
Reviewer #3 (Public review):
Summary:
Cuentas-Condori et al. generate cell-specific tools for visualizing the endogenous expression of, as well as knocking out, four different classes of neurotransmitter vesicular transporters (glutamatergic, cholinergic, GABAergic, and monoaminergic) in C. elegans. They then use these tools in an intersectional strategy to provide evidence for the co-expression of these transporters in individual neurons, suggesting co-transmission of the associated neurotransmitters.
Strengths:
A major strength of the work is the generation of several endogenous tools that will be of use to the community. Additionally, this adds to accumulating evidence of co-transmission of different classes of neurotransmitters in the nervous system.
Weaknesses:
A weakness of the study is a lack of comparison to previously published …
Reviewer #3 (Public review):
Summary:
Cuentas-Condori et al. generate cell-specific tools for visualizing the endogenous expression of, as well as knocking out, four different classes of neurotransmitter vesicular transporters (glutamatergic, cholinergic, GABAergic, and monoaminergic) in C. elegans. They then use these tools in an intersectional strategy to provide evidence for the co-expression of these transporters in individual neurons, suggesting co-transmission of the associated neurotransmitters.
Strengths:
A major strength of the work is the generation of several endogenous tools that will be of use to the community. Additionally, this adds to accumulating evidence of co-transmission of different classes of neurotransmitters in the nervous system.
Weaknesses:
A weakness of the study is a lack of comparison to previously published single-cell sequencing data. These tools are alternatively described in the manuscript as superior to the sequencing data and as validation of the sequencing data, but neither claim can be assessed without knowing how they compare and contrast to that data. It is thus not clear to what extent the conclusions of this paper are an advance over what could be determined from the sequencing data on its own. Finally, some technical considerations should be discussed as potential caveats to the robustness of their intersectional strategy for concluding that certain genes are indeed co-expressed. Overall, claims about co-transmission should be tempered by the caveats presented in the discussion, suggesting that co-expression of these transporters is not in and of itself sufficient for neurotransmitter release.
-