Earliest Evidence of Elephant Butchery at Olduvai Gorge (Tanzania) Reveals the Evolutionary Impact of Early Human Megafaunal Exploitation
Curation statements for this article:-
Curated by eLife
eLife Assessment
In this valuable study, the authors present traces of bone modification on ~1.8 million-year-old proboscidean remains from Tanzania, which they infer to be the earliest evidence for stone-tool-assisted megafaunal consumption by hominins. Challenging published claims, the authors argue that persistent megafaunal exploitation roughly coincided with the earliest Achulean tools. Notwithstanding the rich descriptive and spatial data, the behavioral inferences about hominin agency rely on traces (such as bone fracture patterns and spatial overlap) that are not unequivocal; the evidence presented to support the inferences thus remains incomplete. Given the implications of the timing and extent of hominin consumption of nutritious and energy-dense food resources, as well as of bone toolmaking, the findings of this study will be of interest to paleoanthropologists and other evolutionary biologists.
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (eLife)
Abstract
The role of megafaunal exploitation in early human evolution remains debated. Occasional use of large carcasses by early hominins has been considered by some as opportunistic, possibly a fallback dietary strategy, and for others a more important survival strategy. At Olduvai Gorge, evidence for megafaunal butchery is scarce in the Oldowan of Bed I, but becomes more frequent and widespread after 1.8 Ma in Bed II, coinciding with the emergence of Acheulean technologies. Here, we present the earliest direct evidence of proboscidean butchery, including a newly documented elephant butchery site (EAK). This shift in behavior is accompanied by larger, more complex occupation sites, signaling a profound ecological and technological transformation. Rather than opportunistic scavenging, these findings suggest a strategic adaptation to megafaunal resources, with implications for early human subsistence and social organization. The ability to systematically exploit large prey represents a unique evolutionary trajectory, with no direct modern analogue, since modern foragers do so only episodically.
Article activity feed
-
-
-
eLife Assessment
In this valuable study, the authors present traces of bone modification on ~1.8 million-year-old proboscidean remains from Tanzania, which they infer to be the earliest evidence for stone-tool-assisted megafaunal consumption by hominins. Challenging published claims, the authors argue that persistent megafaunal exploitation roughly coincided with the earliest Achulean tools. Notwithstanding the rich descriptive and spatial data, the behavioral inferences about hominin agency rely on traces (such as bone fracture patterns and spatial overlap) that are not unequivocal; the evidence presented to support the inferences thus remains incomplete. Given the implications of the timing and extent of hominin consumption of nutritious and energy-dense food resources, as well as of bone toolmaking, the findings of this study will be …
eLife Assessment
In this valuable study, the authors present traces of bone modification on ~1.8 million-year-old proboscidean remains from Tanzania, which they infer to be the earliest evidence for stone-tool-assisted megafaunal consumption by hominins. Challenging published claims, the authors argue that persistent megafaunal exploitation roughly coincided with the earliest Achulean tools. Notwithstanding the rich descriptive and spatial data, the behavioral inferences about hominin agency rely on traces (such as bone fracture patterns and spatial overlap) that are not unequivocal; the evidence presented to support the inferences thus remains incomplete. Given the implications of the timing and extent of hominin consumption of nutritious and energy-dense food resources, as well as of bone toolmaking, the findings of this study will be of interest to paleoanthropologists and other evolutionary biologists.
-
Reviewer #1 (Public review):
Domínguez-Rodrigo and colleagues make a moderately convincing case for habitual elephant butchery by Early Pleistocene hominins at Olduvai Gorge (Tanzania), ca. 1.8-1.7 million years ago. They present this at the site scale (the EAK locality, which they excavated), as well as across the penecontemporaneous landscape, analyzing a series of findspots that contain stone tools and large-mammal bones. The latter are primarily elephants, but giraffids and bovids were also butchered in a few localities. The authors claim that this is the earliest well-documented evidence for elephant butchery; doing so requires debunking other purported cases of elephant butchery in the literature, or in one case, reinterpreting elephant bone manipulation as being nutritional (fracturing to obtain marrow) rather than technological …
Reviewer #1 (Public review):
Domínguez-Rodrigo and colleagues make a moderately convincing case for habitual elephant butchery by Early Pleistocene hominins at Olduvai Gorge (Tanzania), ca. 1.8-1.7 million years ago. They present this at the site scale (the EAK locality, which they excavated), as well as across the penecontemporaneous landscape, analyzing a series of findspots that contain stone tools and large-mammal bones. The latter are primarily elephants, but giraffids and bovids were also butchered in a few localities. The authors claim that this is the earliest well-documented evidence for elephant butchery; doing so requires debunking other purported cases of elephant butchery in the literature, or in one case, reinterpreting elephant bone manipulation as being nutritional (fracturing to obtain marrow) rather than technological (to make bone tools). The authors' critical discussion of these cases may not be consensual, but it surely advances the scientific discourse. The authors conclude by suggesting that an evolutionary threshold was achieved at ca. 1.8 ma, whereby regular elephant consumption rich in fats and perhaps food surplus, more advanced extractive technology (the Acheulian toolkit), and larger human group size had coincided.
The fieldwork and spatial statistics methods are presented in detail and are solid and helpful, especially the excellent description (all too rare in zooarchaeology papers) of bone conservation and preservation procedures. However, the methods of the zooarchaeological and taphonomic analysis - the core of the study - are peculiarly missing. Some of these are explained along the manuscript, but not in a standard Methods paragraph with suitable references and an explicit account of how the authors recorded bone-surface modifications and the mode of bone fragmentation. This seems more of a technical omission that can be easily fixed than a true shortcoming of the study. The results are detailed and clearly presented.
By and large, the authors achieved their aims, showcasing recurring elephant butchery in 1.8-1.7 million-year-old archaeological contexts. Nevertheless, some ambiguity surrounds the evolutionary significance part. The authors emphasize the temporal and spatial correlation of (1) elephant butchery, (2) Acheulian toolkits, and (3) larger sites, but do not actually discuss how these elements may be causally related. Is it not possible that larger group size or the adoption of Acheulian technology have nothing to do with megafaunal exploitation? Alternative hypotheses exist, and at least, the authors should try to defend the causation, not just put forward the correlation. The only exception is briefly mentioning food surplus as a "significant advantage", but how exactly, in the absence of food-preservation technologies? Moreover, in a landscape full of aggressive scavengers, such excess carcass parts may become a death trap for hominins, not an advantage. I do think that demonstrating habitual butchery bears very significant implications for human evolution, but more effort should be invested in explaining how this might have worked.
Overall, this is an interesting manuscript of broad interest that presents original data and interpretations from the Early Pleistocene archaeology of Olduvai Gorge. These observations and the authors' critical review of previously published evidence are an important contribution that will form the basis for building models of Early Pleistocene hominin adaptation.
-
Reviewer #2 (Public review):
The authors argue that the Emiliano Aguirre Korongo (EAK) assemblage from the base of Bed II at Olduvai Gorge shows systematic exploitation of elephants by hominins about 1.78 million years ago. They describe it as the earliest clear case of proboscidean butchery at Olduvai and link it to a larger behavioral shift from the Oldowan to the Acheulean.
The paper includes detailed faunal and spatial data. The excavation and mapping methods appear to be careful, and the figures and tables effectively document the assemblage. The data presentation is strong, but the behavioral interpretation is not supported by the evidence.
The claim for butchery is based mainly on the presence of green-bone fractures and the proximity of bones and stone artifacts. These observations do not prove human activity. Fractures of this …
Reviewer #2 (Public review):
The authors argue that the Emiliano Aguirre Korongo (EAK) assemblage from the base of Bed II at Olduvai Gorge shows systematic exploitation of elephants by hominins about 1.78 million years ago. They describe it as the earliest clear case of proboscidean butchery at Olduvai and link it to a larger behavioral shift from the Oldowan to the Acheulean.
The paper includes detailed faunal and spatial data. The excavation and mapping methods appear to be careful, and the figures and tables effectively document the assemblage. The data presentation is strong, but the behavioral interpretation is not supported by the evidence.
The claim for butchery is based mainly on the presence of green-bone fractures and the proximity of bones and stone artifacts. These observations do not prove human activity. Fractures of this kind can form naturally when bones break while still fresh, and spatial overlap can result from post-depositional processes. The studies cited to support these points, including work by Haynes and colleagues, explain that such traces alone are not diagnostic of butchery, but this paper presents them as if they were.
The spatial analyses are technically correct, but their interpretation extends beyond what they can demonstrate. Clustering indicates proximity, not behavior. The claim that statistical results demonstrate a functional link between bones and artifacts is not justified. Other studies that use these methods combine them with direct modification evidence, which is lacking in this case.
The discussion treats different bodies of evidence unevenly. Well-documented cut-marked specimens from Nyayanga and other sites are described as uncertain, while less direct evidence at EAK is treated as decisive. This selective approach weakens the argument and creates inconsistency in how evidence is judged.
The broader evolutionary conclusions are not supported by the data. The paper presents EAK as marking the start of systematic megafaunal exploitation, but the evidence does not show this. The assemblage is described well, but the behavioral and evolutionary interpretations extend far beyond what can be demonstrated.
-