Dynamic assembly of malate dehydrogenase-citrate synthase multienzyme complex in the mitochondria

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This study reports a dynamic association/dissociation between malate dehydrogenase (MDH1) and citrate synthase (CIT1) in Saccharomyces cerevisiae under different metabolic conditions that control TCA pathway flux rate. The research question is timely, the use of the NanoBiT split-luciferase system to monitor protein-protein interactions is innovative, and the significance of the findings is valuable. However, the strength of evidence needed to support the conclusions was found to be incomplete based on a lack of critical control and mechanistic experiments.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Abstract

The tricarboxylic acid (TCA) cycle enzymes, malate dehydrogenase (MDH1) and citrate synthase (CIT1), form a multienzyme complex called ‘metabolon’ that channels intermediate, oxaloacetate, between the reaction centers of the enzymes. Since the MDH1-CIT1 metabolon enhances the pathway reactions in vitro, it is postulated to regulate the TCA cycle flux through dynamic assembly in response to cellular metabolic demands. Here, we demonstrated that yeast mitochondrial MDH1 and CIT1 dissociated when aerobic respiration was suppressed by the Crabtree effect and associated when the pathway flux was enhanced by acetate. Pharmacological TCA cycle inhibitions dissociated the complex, while electron transport chain inhibition enhanced the interaction. The multienzyme complex assembly was related to the mitochondrial matrix acidification and oxidation, as well as cellular levels of malate, fumarate, and citrate. These factors significantly affected the MDH1-CIT1 complex affinity in vitro. Especially the buffer pH significantly changed the MDH1-CIT1 affinity within the pH range between 6.0 and 7.0, which is observed in the mitochondrial matrix under physiological conditions. These results show a dynamic association and dissociation of a metabolon in the mitochondria and its relationship with pathway flux, supporting the metabolon’s role in metabolic regulation. Multiple factors, including pH and metabolite availabilities, possibly regulate MDH1-CIT1 interaction.

Article activity feed

  1. eLife Assessment

    This study reports a dynamic association/dissociation between malate dehydrogenase (MDH1) and citrate synthase (CIT1) in Saccharomyces cerevisiae under different metabolic conditions that control TCA pathway flux rate. The research question is timely, the use of the NanoBiT split-luciferase system to monitor protein-protein interactions is innovative, and the significance of the findings is valuable. However, the strength of evidence needed to support the conclusions was found to be incomplete based on a lack of critical control and mechanistic experiments.

  2. Reviewer #1 (Public review):

    Summary:

    The study by the Obata group characterizes the dynamics of the canonical malate dehydrogenase-citrate synthase metabolon in yeast.

    Strengths:

    The study is well-written and appears to give clear demonstrations of this phenomenon.

    Studies of the dynamics of metabolon formation are rare; if the authors can address the concern detailed below, then they have provided such for one of the canonical metabolons in nature.

    Weaknesses:

    There is a fundamental issue with the study, which is that the authors do not provide enough support or information concerning the split luciferase system that they use. Is the binding reversible or not? How the data is interpreted is massively influenced by this fact. What are the pros and cons of this method in comparison to, for example, FLIM-FRET? The authors state that the method is semi-quantitative - can they document this? All of the conclusions are based on the quality of this method. I know that it has been used by others, but at least some preliminary documentation to address these questions is required.

  3. Reviewer #2 (Public review):

    This study explores the dynamic association between malate dehydrogenase (MDH1) and citrate synthase (CIT1) in Saccharomyces cerevisiae, with the aim of linking this interaction to respiratory metabolism. Utilizing a NanoBiT split-luciferase system, the authors monitor protein-protein interactions in vivo under various metabolic conditions.

    Major Concerns:

    (1) NanoBiT Signal May Reflect Protein Abundance Rather Than Interaction Strength

    In Figure 1C, the authors report increased MDH1-CIT1 interaction under respiratory (acetate) conditions and decreased interaction during fermentation (glucose), as indicated by NanoBiT luminescence. However, this signal appears to correlate strongly with the expression levels of MDH1 and CIT1, raising the possibility that the observed luminescence reflects protein abundance rather than specific interaction dynamics. To resolve this, NanoBiT signals should be normalized to the expression levels of both proteins to distinguish between abundance-driven and interaction-driven changes.

    (2) Lack of Causal Evidence

    The study presents a series of metabolic perturbation experiments (e.g., arsenite, AOA, antimycin A, malonate) and correlates changes in metabolite levels with NanoBiT signals. However, these data are correlative and do not establish a functional role for the MDH1-CIT1 interaction in metabolic regulation. To demonstrate causality, the authors should implement approaches to specifically disrupt the MDH1-CIT1 interaction. One strategy could involve using a 15-residue peptide (Pept1) derived from the Pro354-Pro366 region of CIT1, previously shown to mediate the interaction, or introducing the cit1Δ3 (Arg362Glu) mutation, which perturbs binding. Metabolic flux analysis using ^13C-labeled glucose and mitochondrial respiration assays (e.g., Seahorse) could then assess functional consequences.

    (3) Absence of Protein Expression Controls Under Perturbation Conditions

    In experiments involving acetate, arsenite, AOA, antimycin A, and malonate, the authors infer changes in MDH1-CIT1 association based solely on NanoBiT signals. However, no accompanying data are provided on MDH1 and CIT1 protein levels under these conditions. This omission weakens the conclusions, as altered expression rather than interaction strength could underlie the observed luminescence changes. Immunoblotting or quantitative proteomics should be used to confirm constant protein expression across conditions.

    Conclusion:

    Although the central question is compelling and the use of NanoBiT in live cells is a strength, the manuscript requires additional experimental rigor. Specifically, normalization of interaction signals, introduction of causative perturbations, and validation of protein expression are essential to substantiate the study's claims.

  4. Reviewer #3 (Public review):

    Summary:

    Metabolons are multisubunit complexes that promote the physical association of sequential enzymes within a metabolic pathway. Such complexes are proposed to increase metabolic flux and efficiency by channeling reaction intermediates between enzymes. The TCA cycle enzymes malate dehydrogenase (MDH1) and citrate synthase (CIT1) have been linked to metabolon formation, yet the conditions under which these enzymes interact, and whether such interactions are dynamic in response to metabolic cues, remain unclear, particularly in the native cellular context. This study uses a nanoBIT protein-protein interaction assay to map the dynamic behavior of the MDH1-CIT1 interaction in response to multiple metabolic stimuli and challenges in yeast. Beyond mapping these interactions in real time, the authors also performed GC-MS metabolomics to map whole-cell metabolite alterations across experimental conditions. Finally, the authors use microscale thermophoresis to determine components that alter the MDH1-CIT1 interaction in vitro. Collectively, the authors synthesize their collected data into a model in which the MDH1-CIT1 metabolon dissociates in conditions of low respiratory flux, and is stimulated during conditions of high respiratory flux. While their data largely support these models, some key exceptions are found that suggest this model is likely oversimplified and will require further work to understand the complexities associated with MDH1-CIT1 interaction dynamics. Nonetheless, the authors put forth an interesting and timely toolkit to begin to understand the interaction kinetics and dynamics of key metabolic enzymes that should serve as a platform to begin disentangling these important yet understudied aspects of metabolic regulation.

    Strengths:

    (1) The authors address an important question: how do metabolon-associated protein-protein interactions change across altered metabolic conditions?

    (2) The development and validation of the MDH1-CIT1 nanoBIT assay provides an important tool to allow the quantification of this protein-protein interaction in vivo. Importantly, the authors demonstrate that the assay allows kinetic and real time assessment of these protein interactions, which reveal interesting and dynamic behavior across conditions.

    (3) The use of classic biochemical techniques to confirm that pH and various metabolites can alter the MDH1-CIT1 interaction in vitro is rigorous and supports the model put forth by the authors.

    Weaknesses:

    (1) Some of the data collected seem to be merely reported rather than synthesized and interpreted for the reader. This is particularly true for data that seem to reflect more complex trends, such as the GC-MS experiments that map metabolites across multiple experiments, or treatments that show somewhat counterintuitive results, such as the antimycin A treatment, which promotes rather than disrupts the MDH1-CIT1 interaction.

    (2) Some of the assertions put forth in the manuscript are not substantiated by the data presented, and the authors are at times overly reliant on previous findings from the literature to support their claims. This is particularly notable for claims about "TCA cycle flux"; the authors do not perform flux analysis anywhere in their study and should be cautious when insinuating correlations between their observations and "flux".

    (3) The manuscript presentation could be improved. For figures, at times, the axes do not have intuitive labels (example, Figure 1A), data points and details about the number of samples analyzed are missing (bar graphs and box plots), and molecular weight markers are not reported on western blots. The authors refer to the figures out of order in the text, which makes the manuscript challenging to navigate as a reader.