Individual differences in fear memory expression engage distinct functional brain networks
Curation statements for this article:-
Curated by eLife
eLife Assessment
This important work sets out to identify the neural substrates of associative fear responses in adult zebrafish. Through a compelling and innovative paradigm and analysis, the authors suggest brain regions associated with individual differences in fear memory. While several findings are well supported, aspects of the interpretation and presentation are partially incomplete, and the manuscript would benefit from adjusting key claims or including additional experiments. Nonetheless, this study showcases the strength of zebrafish for systems-level neuroscience and will be of broad interest to the neuroscience community.
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (eLife)
Abstract
Abstract
Fearful stimuli elicit a mix of active (e.g., evasion) and passive (e.g., freezing) behaviors in a wide range of species, including zebrafish (Danio rerio). However, it is not clear if individual differences in fear responses exist and, if so, what parts of the brain may underlie such differences. To probe these questions, we developed a contextual fear conditioning paradigm for zebrafish that uses conspecific alarm substance (CAS) as an unconditioned stimulus where fish associate CAS administration with a specific tank. To identify individual differences, we collected behavioral responses from over 300 fish from four different strains (AB, TU, TL, and WIK) and both sexes. We found that fear memory behavior fell into four distinct groups: non-reactive, evaders, evading freezers, and freezers. We also found that background strain and sex influenced how fish respond to CAS, with males more likely to increase evasive behaviors than females and the TU strain more likely to be non-reactive. Finally, we performed whole-brain activity mapping to identify the brain regions that are associated with different behavioral responses. All groups exposed to the tank had strong engagement of the telencephalon, whereas regions beyond the telencephalon distinguished behavioral groups: animals that have high levels of freezing, but low levels of evasion, uniquely engage the cerebellum, preglomerular nuclei, and pretectal areas, whereas those fish that mix evasion with freezing engage the preoptic and hypothalamic areas. Taken together, these findings reveal that zebrafish exhibit individual differences in fear memory expression that are supported at the neural level by extra-telencephalic regions.
Article activity feed
-
-
-
eLife Assessment
This important work sets out to identify the neural substrates of associative fear responses in adult zebrafish. Through a compelling and innovative paradigm and analysis, the authors suggest brain regions associated with individual differences in fear memory. While several findings are well supported, aspects of the interpretation and presentation are partially incomplete, and the manuscript would benefit from adjusting key claims or including additional experiments. Nonetheless, this study showcases the strength of zebrafish for systems-level neuroscience and will be of broad interest to the neuroscience community.
-
Reviewer #1 (Public review):
Summary:
This work provides a comprehensive analysis of how adult zebrafish show fear responses to conspecific alarm substances (CAS) and retain their associative memory. It shows that freezing is a more reliable measure of fear response and memory compared to evasive swimming, and that the reactivity and the type of responses depend on the zebrafish strain. It further suggests neuronal substrates of different fear responses based on c-Fos mapping.
Strengths:
The behavioral part is the most comprehensive and detailed yet in the zebrafish field, providing strong support for the authors' claim. The flow from Figure 1 to Figure 4 is very smooth. They provide extremely detailed, yet complementary and necessary, analyses of how different categories of behavior emerge over time during the CAS exposure and memory …
Reviewer #1 (Public review):
Summary:
This work provides a comprehensive analysis of how adult zebrafish show fear responses to conspecific alarm substances (CAS) and retain their associative memory. It shows that freezing is a more reliable measure of fear response and memory compared to evasive swimming, and that the reactivity and the type of responses depend on the zebrafish strain. It further suggests neuronal substrates of different fear responses based on c-Fos mapping.
Strengths:
The behavioral part is the most comprehensive and detailed yet in the zebrafish field, providing strong support for the authors' claim. The flow from Figure 1 to Figure 4 is very smooth. They provide extremely detailed, yet complementary and necessary, analyses of how different categories of behavior emerge over time during the CAS exposure and memory retrieval. I'm convinced that neuro researchers who study fear/stress responses will always refer to this paper to plan and interpret their future experiments.
Weaknesses:
The neural analysis part is very comprehensive. Figure 5 and Figure 6 are independent but complement each other very well. They together support that the cerebellar system is the key brain component for a freezing response. Their extreme focus on high-level analyses, however, came at the expense of biological intuitions. I suggest adding some figure panels and result/discussion paragraphs to help with that aspect.
-
Reviewer #2 (Public review):
In this study, Fontana et al. develop a paradigm for associative conditioning by pairing exposure to an alarm substance with a novel tank. Exposure to conspecific alarm substance (CAS) in the novel tank triggers freezing and what they characterize as evasive swimming behaviour, which is subsequently seen in a re-exposure to the novel tank without the CAS present. Importantly, these states are identified via automated processes, including postural tracking and a random forest classification process, which could be very useful tools for subsequent studies.
In their experiments, they focus on the differences in behaviour among strains of zebrafish (both males and females), and among individual zebrafish. For males and females of different strains, they find some differences, though the clearest message seems to …
Reviewer #2 (Public review):
In this study, Fontana et al. develop a paradigm for associative conditioning by pairing exposure to an alarm substance with a novel tank. Exposure to conspecific alarm substance (CAS) in the novel tank triggers freezing and what they characterize as evasive swimming behaviour, which is subsequently seen in a re-exposure to the novel tank without the CAS present. Importantly, these states are identified via automated processes, including postural tracking and a random forest classification process, which could be very useful tools for subsequent studies.
In their experiments, they focus on the differences in behaviour among strains of zebrafish (both males and females), and among individual zebrafish. For males and females of different strains, they find some differences, though the clearest message seems to be that the most robust measure of the behaviour in response to both the CAS and in the memory trials is the freezing behaviour, while evasive behaviour is more variable. and not always seen. This may relate to their observation of significant "evasiveness" in vehicle control experiments (discussed further below).
Moving on to individual variation from within this multi-strain male/female dataset, they first examine transition matrices between states and find tthat his is not dramatically altered by stimulus exposure. They then use clustering to identify 4 different "classes" of zebrafish that differ in their expression (or not) of two types of behaviour: freezing and/or evasive behaviour. They show that over the three exposure epochs of the experiment, this classification is somewhat stable in an individual fish, though many fish change their behaviour - e.g., evading + freezing -> only freezing.
In the final set of experiments, the authors move beyond behavioural analyses and perform whole-brain cFos mapping of these individual zebrafish. They perform analyses aimed at identifying correlations between individual behavioural expression and the number of cFos-positive cells in different brain regions. Using partial least squares analysis, they find areas associated with two types of behavioural contrasts, which differ in their weighting of different behavioural expression during the Memory trials. Covariation and network structure analysis within different classes of larvae also find some differences in covariation among brain areas, providing hypotheses as to underlying network effects that may govern the expression of freezing and/or evasive behavior in the memory trial phases.
Overall, I find this to be an interesting study that employs state of the are methods of behavioural analyses and whole-brain cFos analyses, but I am left a little bit confused as to what the take home message is and what can be concluded from this complex study that mixes in analyses of strain, sex, and individuality within a quite complex assay with multiple behavioural parameters.
My suggestions are as follows:
(1) My first concern relates to the claim in the abstract that "We found that fear memory behavior fell into four distinct groups: non-reactive, evaders, evading freezers, and freezers".
In my opinion, the "freezing" aspect is well supported as being both triggered by the CAS and for memory effect upon re-exposure to the tank, but I am less convinced about the "evasive" behaviour. In Figure 2, it appears that "evasiveness" is generally not increased in both the Exposure or Memory phases for many groups, and in Figure 5, it appears that "evasiveness" is expressed by nearly 50% of the fish in the pre-exposure condition before CAS addition and in all phases in the vehicle condition. Therefore, it appears that most of the expression of this behaviour is independent of any memory-based effect.
(2) My second concern relates to the claim in the abstract that "background strain and sex influenced how fish respond to CAS, with males more likely to increase evasive behaviors than females and the TU strain more likely to be non-reactive."
My understanding, based on the introduction and on the methods, is that it is likely important that the CAS be prepared from conspecifics of the same strain and sex, and for this reason, they prepared different CAS specific for each strain and each sex. Therefore, the "CAS" that is applied is necessarily different for each condition, and I am concerned about if the differences observed could relate more to variation in the quality, purity, concentration, etc. of the specific CAS samples for different groups, rather than their reactivity to the substance or their ability to form memories based on such experiences.
(3) My third concern relates to the interpretation of the cFos data.
As I mentioned above, I feel as though the behavioural analysis is perhaps more complex than is warranted via the inclusion of evasiveness, and I wonder if the conclusions from the experiments would be simpler if analyzed only from the perspective of freezing.
But considering the presented analyses: while I dont think there is anything wrong with the partial least squares approach and the network analyses, I am concerned that the simple messaging in the text does not reflect the complexity of this analysis combining different weightings of different behavioural characteristics in a behavioural contrast, or covariations among many regions and what such analyses mean at the level of brain function. For these reasons, I feel like statements along the lines of "Behavioral variation is driven by differences in the activity of brain regions outside the telencephalon, such as the cerebellum, preglomerular nuclei, preoptic area and hypothalamus" are not well supported.
-
Reviewer #3 (Public review):
Summary:
This manuscript by Fontana et al. sets out to fill a critical gap in our understanding of how individuality in fear responses corresponds to changes in brain activity. Previous work has shown in myriad species that fear behaviors are highly variable, and these variabilities correlate with sex and strain, with epigenetic modifications, and neural activity in specific regions of the brain, such as the amygdala. However, a whole-brain functional assessment of whether activity in different regions of the brain is associated with fear behavior has been difficult to assess, in part due to the large size and opacity of the brain. The Kenney group overcomes these limitations using the zebrafish, together with powerful behavioral and brain imaging approaches pioneered by their lab. To overcome the technical …
Reviewer #3 (Public review):
Summary:
This manuscript by Fontana et al. sets out to fill a critical gap in our understanding of how individuality in fear responses corresponds to changes in brain activity. Previous work has shown in myriad species that fear behaviors are highly variable, and these variabilities correlate with sex and strain, with epigenetic modifications, and neural activity in specific regions of the brain, such as the amygdala. However, a whole-brain functional assessment of whether activity in different regions of the brain is associated with fear behavior has been difficult to assess, in part due to the large size and opacity of the brain. The Kenney group overcomes these limitations using the zebrafish, together with powerful behavioral and brain imaging approaches pioneered by their lab. To overcome the technical obstacles of delivering a reproducible unconditioned stimulus in water and quantifying nuanced behavioral responses, the authors developed a three-day conditioning paradigm in which fish were repeatedly exposed to CAS in one tank context and to control water in another. Leveraging automated cluster analysis across over 300 individuals from four inbred strains, they identified four distinct memory-recall phenotypes - non-reactive, evaders, evading freezers, and freezers - demonstrating both the robustness of their assay and the influence of genetic background and sex on fear learning. Finally, whole-brain imaging using the AZBA atlas (Kenney et al. eLife) and cfos mapping coupled with multivariate analysis revealed that although all fish reengaged telencephalic regions during recall, high-freezing phenotypes uniquely recruited cerebellar, preglomerular, and pretectal nuclei, whereas mixed evasion-freezing fish showed preferential activation of preoptic and hypothalamic areas - a finding that lays the groundwork for dissecting the distributed neural substrates of associative fear in zebrafish.
Strengths:
The strengths of the study lie in the use of zeberarish and the innovative behavioral, modeling, and brain imaging tools applied to address this question. The question of how brain-wide activity correlates with variations in fear behavior is fundamental, and arguably, this system is the only system that could be used to address this. The statistics are appropriate, and the study is well reasoned. Overall, I like this manuscript very much and think it adds invaluable information to the field of fear/anxiety.
Weaknesses:
I have a few questions and suggestions.
(1) The three-day contextual fear paradigm, as implemented - one CAS pairing on day 2 followed by a single recall test on day 3 - inevitably conflates acquisition and long-term memory, making it impossible to know whether strains like TU truly recall the association poorly or simply learn it more slowly. For example, given that TU fish extinguish fear faster than AB or TL strains in extended protocols, they may simply require additional or repeated CAS pairings to achieve the same asymptotic performance. To disentangle learning kinetics from recall strength, the assay could be revised to include multiple acquisition trials (e.g., conditioning on two or more consecutive days) with an immediate post-conditioning probe to assess acquisition independent of consolidation, and continuous measurement of freezing and evasive behaviors across each trial to fit learning curves for each strain. Such refinements - even if on a subset of the strains - would reveal whether "non-reactive" phenotypes reflect genuine recall deficits or merely delayed acquisition.
(2) My second major question is with respect to Figure 3 panel B. This is a complex figure, and I can understand the gist of what the authors are attempting to show, but it is difficult to understand as it is. Can this be represented in a way that is clearer and explained a bit more easily?
(3) The brain mapping is by far one of the most interesting aspects of this study, and the methods that the group used are interesting. The brain mapping, however, relies on generating "contrasting" groups (Figure 6A), and I was not clear as to how these two groups were formed. Could the authors elaborate a bit?
-
eLife Assessment
This important study uses a combination of eye-tracking and computational models based on Active Inference to explain behavior in a gaze-contingent cued-reversal paradigm with 6 - 10-month-old infants. The study demonstrates solid evidence that the same rigorous computational modeling standards commonly applied in studies in adults can also be applied in studies of infants' learning, and a cluster analysis reveals that the parameters of the winning model provide better pattern separation between identified subgroups than behavior or questionnaire data alone. However, the evidence for some specific claims is incomplete, due to poor behavioral performance, unclear significance of the pupil data, and complexity of the model fitting; the claims regarding implications for psychiatry were also considered to be too strong and …
eLife Assessment
This important study uses a combination of eye-tracking and computational models based on Active Inference to explain behavior in a gaze-contingent cued-reversal paradigm with 6 - 10-month-old infants. The study demonstrates solid evidence that the same rigorous computational modeling standards commonly applied in studies in adults can also be applied in studies of infants' learning, and a cluster analysis reveals that the parameters of the winning model provide better pattern separation between identified subgroups than behavior or questionnaire data alone. However, the evidence for some specific claims is incomplete, due to poor behavioral performance, unclear significance of the pupil data, and complexity of the model fitting; the claims regarding implications for psychiatry were also considered to be too strong and unsupported by evidence. This work will be of interest to developmental psychologists and cognitive neuroscientists.
-
Reviewer #1 (Public review):
Summary:
The authors developed a new gaze-based reversal task to study 6 - 10-month-old infants, in what would typically be a very challenging age group to study behavior related to learning, exploration, and perseveration. Here, the research question is excellently motivated by pointing out the limitation of past work that has typically studied adult clinical populations using similar approaches, which presents only the endpoint of the developmental process. Thus, there is important clinical and scientific value in studying much earlier stages in the developmental process. Here, the authors accomplish this with a new gaze-based paradigm that allows them to fit a variety of complex computational models to data from 41 infants. The main advantage of their winning model is that the parameters provide better …
Reviewer #1 (Public review):
Summary:
The authors developed a new gaze-based reversal task to study 6 - 10-month-old infants, in what would typically be a very challenging age group to study behavior related to learning, exploration, and perseveration. Here, the research question is excellently motivated by pointing out the limitation of past work that has typically studied adult clinical populations using similar approaches, which presents only the endpoint of the developmental process. Thus, there is important clinical and scientific value in studying much earlier stages in the developmental process. Here, the authors accomplish this with a new gaze-based paradigm that allows them to fit a variety of complex computational models to data from 41 infants. The main advantage of their winning model is that the parameters provide better pattern separation between two identified clusters of participants compared to behavioral variables alone.
Strengths:
Overall, the paper is well-written, and the models and analyses are applied in a principled and thorough fashion. The authors do an excellent job of both motivating their research question and addressing it through their task and set of computational models. The scope is also quite ambitious, modeling both choices and pupillary responses, while also using the models to generate behavior that is comparable to the experimental data and performing a cluster analysis to compare the suitability of the model parameters vs. other behavioral/questionnaire data in performing pattern separation between participants.
Weaknesses:
However, despite these strengths, I had a number of concerns that may limit the reliability of the findings.
First, given the fact that the rewards for the initial pre-reversal setting are defined by the first choice of the infants, it was unclear to me whether the behavioral patterns in Figure 2 really support the fact that there was in fact, (prediction-error-based) learning in the task at all. The behavioral analyses proceed very briskly without really addressing this question, before rapidly jumping off the complexity cliff to present the models. However, even with the models, the winning model only had free parameters for preference (c) and a left-right dominance (epsilon), which don't really capture mechanisms related to learning. The epistemic and extrinsic components included in the model at the 2nd stage could potentially help shed light on this question, but (unless I've misunderstood) they seem to be all-or-nothing parts of the model, and thus don't reappear in later analyses (e.g., cluster analysis) because they are not individual-specific parameters. Thus, the main learning-relevant aspects of the model seem divorced from the ability to perform clustering or other clinically relevant diagnoses downstream. Thus, it was unclear to me whether the results really capture mechanisms related to cognitive flexibility that motivate the manuscript in the introduction.
My other main concern was the complexity of the models and the way model comparison was performed using the three stages. First of all, the set of models is quite complex and risks alienating many developmental psychologists who would otherwise be very interested in these findings. Thus, I'm curious why the authors didn't consider including much simpler context-based RL models (e.g., Rescorla-Wagner/Q-learning models) that explicitly use prediction-error updates and whose simplicity might better match the simplicity of the behavior that 6-10 month infants are capable of displaying. Certainly, preference (as an inverse temperature parameter for a softmax policy) and left-right dominance (as a bias) could be implemented with these much simpler models. Second, while the three-stage model comparison seems somewhat principled, it left me questioning whether the 1st stage or 2nd stage results might be impacted by later stages. For instance, if the Simple-discard model were to still win in the first stage, once omega and eta have been eliminated as free parameters. Of course, I understand that there may be feasibility issues with testing all combinatorial variants of the model. But it was unclear why this specific order was chosen and what consequences this sequential dependency in the model fitting may have for the conclusions. And while model identifiability is stated in the abstract as one of the strengths of this approach, there don't seem to be any clear analyses supporting this fact. I would have loved to see a model recovery analysis (see Wilson & Collins et al., eLife 2019) to support this statement.
-
Reviewer #2 (Public review):
Summary:
This paper examines infants' learning in a novel gaze-contingent cued reversal learning task. The study provides strong evidence that infants learn in the task, and they characterize individual differences in learning using computational modeling. The best-fitting model of the set compared reflects a learning of mappings between context cues and outcomes that do not carry over across blocks. Infants are then clustered into two groups based on model parameter estimates capturing primacy bias and reward sensitivity. These groupings exhibited differences in infant temperament and other developmental measures. The modeling is rigorous, with model predictions accounting for substantial variance in infants' choices, and parameter estimates showing high recoverability. This study is important in that it …
Reviewer #2 (Public review):
Summary:
This paper examines infants' learning in a novel gaze-contingent cued reversal learning task. The study provides strong evidence that infants learn in the task, and they characterize individual differences in learning using computational modeling. The best-fitting model of the set compared reflects a learning of mappings between context cues and outcomes that do not carry over across blocks. Infants are then clustered into two groups based on model parameter estimates capturing primacy bias and reward sensitivity. These groupings exhibited differences in infant temperament and other developmental measures. The modeling is rigorous, with model predictions accounting for substantial variance in infants' choices, and parameter estimates showing high recoverability. This study is important in that it demonstrates that such rigorous standards in computational modeling of behavior can be successfully deployed in infant studies.
Strengths:
The study provides evidence that infants exhibit cognitive flexibility within a reversal learning task and do not simply perseverate.
The methods used within the novel gaze-contingent will be useful for other groups interested in studying learning and decision-making in infants.
The study applies rigorous computational modeling approaches to infants' choices (inferred from gaze) and their physiological responses (i.e., pupil dilation) in the task, demonstrating that infants' reward learning is well-captured by an error-driven learning process.
The authors conduct model comparison, posterior predictive checks, and parameter recoverability analyses and demonstrate that model parameters can be well estimated and that the model can recapitulate infant choice behavior.
Physiological pupil dilation measures that correlate with prediction error signals from the model further validate the model as capturing the learning process.
Weaknesses:
It is not entirely clear that the individual differences in reversal learning identified between the two clusters of infants (ostensibly reflecting differences in cognitive flexibility) have construct validity or specificity for the associated developmental abilities that differ between groups (daily living, communication, motor function, and socialization).
Similarly, it's not clear why the paper is framed as an advance for infant computational *psychiatry* rather than simply an advance in computational modeling of infant behavior. It seems to me that a more general framing is warranted. Basic cognitive development research can also benefit from cognitive hypothesis testing via computational model comparison and precise measurement of infants' behavior in reward learning tasks. Is there reason to believe that infants' behavior in this task might have construct validity for mental health problems related to cognitive flexibility later in development? Do the Vineland or IBQ-R-VSF prospectively predict clinical symptoms?
A large proportion of the recruited infants (14 of 55) were excluded, but few details are provided on why and when they were excluded. Did the excluded infants differ on any of the non-task measures? This information would be helpful to understand limitations in the utility of the task or the generalizability of the findings.
It is stated that: "The infants who completed at least three trials following the reversal were included in the analysis, as it is more likely that their expectations were violated in this interval." Are three trials post-reversal sufficient to obtain reliable estimates of model parameters? More details should be provided on the number of trials completed for all of the included/excluded infants.
-
Reviewer #3 (Public review):
This paper used computational modeling of infants' performance in a reversal learning paradigm to identify two subgroups of infants, one that initially learned a bit faster but then perseverated more and failed to switch after the reversal (yellow cluster), and those who sampled more before the switch but then perseverated less/switched better (magenta cluster - though see below for comments about infants' overall weak performance). The authors describe magenta babies as showing a profile of greater cognitive flexibility, which they note in adults is linked to better outcomes and a lower incidence of psychiatric disorder. Indeed, the yellow cluster scored less well on several scales of the Vineland and showed lower surgency on the IBQ than the magenta cluster. The authors argue that this paper paves the way …
Reviewer #3 (Public review):
This paper used computational modeling of infants' performance in a reversal learning paradigm to identify two subgroups of infants, one that initially learned a bit faster but then perseverated more and failed to switch after the reversal (yellow cluster), and those who sampled more before the switch but then perseverated less/switched better (magenta cluster - though see below for comments about infants' overall weak performance). The authors describe magenta babies as showing a profile of greater cognitive flexibility, which they note in adults is linked to better outcomes and a lower incidence of psychiatric disorder. Indeed, the yellow cluster scored less well on several scales of the Vineland and showed lower surgency on the IBQ than the magenta cluster. The authors argue that this paper paves the way for the field of "infant computational neuropsychiatry."
In general, I think this is a fun and intriguing paper. That said, I have a number of concerns with how it is currently written.
First, the role of pupil dilation in the models was really unclear -- I've read it through a few times and came away with different impressions each time. I am now pretty sure the models were only based on infants' behavioural responses (e.g., choice for the correct versus incorrect location) rather than differences in pupil size, but pupil size kept popping up throughout, and so I initially thought the clusters were based on that. The authors should clarify this so other readers are not confused. (One thing that might help is avoiding the word "behaviour" on its own, unless it is further specified as looking behaviour or not, as I assume that some would characterize pupil dilation as a behaviour as well.)
If clusters were NOT based on pupil size (e.g., reaction to prediction error), why not? Was this attempted, and did no clusters emerge? Did the yellow and magenta group also differ in reaction to prediction error, or not? It seems like the argument that this work will be the basis of infant computational psychiatry would require that there not simply be a link between behaviour in an infant study and other measurements of their functioning - because many other papers to date have demonstrated such relationships, many longitudinally - but instead with the link to something where the neurobiology of the behaviour being studied is better understood. I assume this is why pupil dilation kept coming up, but again, it didn't actually seem to be part of the modelling unless I missed something. That is, although I think that this is a nice finding, currently I think the novelty of the finding, as well as the suggestion that it will start a whole new field, may be overblown. I certainly think the pupillometry data has promise, as does the LUMO data, which the authors alluded to being in the works. But perhaps the implications should be toned down a bit in this paper, until those data are further along.
My final substantial comment (a few more minimal ones below) is that overall, babies did quite poorly at this task. Even after 9 post-switch trials, the magenta group was still responding at chance, and the yellow group seemed not to switch at all. Infants then all seemed to perform very well again during block 2, which makes it seem like they still had the original contingency in mind. That said, from what I could see, no data was provided about how many babies looked to the original correct first during Block 2. But based on the data, I assume they basically all went back to predicting on the first side, as otherwise their return to high levels of successful trials would not make sense, unless they somehow forgot the entire thing. It would be good to know for sure, and to have that data (specifically, how many babies looked to the original side again at the start of block 2) in the main paper. Given this overall lack of sensitive performance in the paradigm, even despite the cues signaling where the rewarding video would be changing completely (that is, the contingency between cue and outcome did not itself switch, the cues themselves did), it seems odd to discuss things like statistical or even skillful learning alongside these data.
-